EXPERIMENTAL ERRORS ACCURACY CHEM 251 SDSU

ERRORS IN MEASUREMENTS

- When we conduct a set of measurements, such as in the table to the the right, two significant questions arise:
 - Does the mean (or other central tendency) agree with the expected (or "true") value?
 - Why is there variability in the measurements of the sample?
- The first question deals with **accuracy** while the second deals with **precision**.

Trial	Value
	2.785
2	2.746
3	2.756
4	2.762
5	2.777
6	2.751
7	2.773
Mean	2.764
Sted. Dev.	0.014

ACCURACY

- The accuracy of a set of measurements is <u>how close</u> the measure of central tendency is to the expected value (μ).
- The accuracy can be described in two ways:
 - The absolute error (e)
 - The percent relative error (%e_r)

Percent Relative Error

$$\% e_r = \frac{|\overline{x} - \mu|}{\mu} \times 100$$

DETERMINATE ERRORS

- Errors that influence the accuracy of a measurement are termed determinate errors.
- There are several different sources for determinate errors, all of which combine to influence the accuracy of a measurement.
- Each source of error in a given measurement will have its own magnitude and sign, which will be replicable.
- Indeterminate errors, which will be discussed later are random and will change from positive to negative errors in replicate measurements.

SAMPLING ERRORS

- Sampling errors occur when the sample does not properly represent the system.
- For example, samples from the left and right banks of the river in the photo will have very different levels of sediment present.
- In the lab this can easily occur if you do not invert and mix volumetric flasks before taking aliquots.

The Rio Negro meets the Amazon River

METHOD ERRORS

- For all analyses there is a relationship between the signal that we measure (S_{total}) and either the absolute amount of the analyte (n_A) or the concentration of the analyte (C_A).
- $S_{total} = k_A n_A + S_{mb}$
- $S_{total} = k_A C_A + S_{mb}$

 The sensitivity of the method (k_A) and the method blank (S_{mb}) must both be valid in order to avoid a method error.

MEASUREMENT ERRORS

MBL 25

:0.030

Ex 20°C

ISO648

- Measurement errors are inherent on all manufactured instruments and equipment. The maximum measurement error or tolerance is typically reported on the instrument (i.e. 25±0.030 mL).
- A delivery from this pipette could be anywhere between 25.030 mL and 24.970 mL.
- Each pipette will have its own error, some will be positive, some will be negative, but they will be consistent.
- The determinate error in the delivery can be reduced drastically by proper calibration of the pipette (e.g. the pipette may be determined to deliver 25.018 mL)

PERSONAL ERRORS

- Personal errors are the "human factor" in any analysis.
- These can include:
 - Sensitivity to seeing a color change endpoint.
 - Biases: over- or underestimating readings.
 - Failures to calibrate.
 - Misinterpretations of procedural directions.

IDENTIFYING DETERMINATE ERRORS

- It can be difficult to identify determinate errors, but when identified they can be corrected.
- Determinate errors can fall into two categories: **constant** and **proportional**.
- <u>Constant determinant errors</u> provide the same magnitude or error regardless of the amount of analyte. Can be detected by analyzing different amounts of the same sample.
- Proportional determinant errors provide differing magnitudes of error with different amounts of analyte. These are much more difficult to detect, likely need a reference standard or alternate method.