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NORMAL DISTRIBUTION
• When we do measurements of a 

sample from the population we are 
unlikely to do enough 
measurements to fully represent 
the population.

• However, if we make enough 
measurements, are resulting mean 
and variance can approximate the 
normal distribution of the 
population.
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is normally distributed. It is easy to imagine that the histogram will more 
closely approximate a normal distribution if we include additional pennies 
in our sample.

We will not offer a formal proof that the sample of pennies in Table 4.13 
and the population of all circulating U. S. pennies are normally distributed. 
The evidence we have seen, however, strongly suggests that this is true. Al-
though we can not claim that the results for all analytical experiments are 
normally distributed, in most cases the data we collect in the laboratory 
are, in fact, drawn from a normally distributed population. According to 
the CENTRAL LIMIT THEOREM, when a system is subject to a variety of in-
determinate errors, the results approximate a normal distribution.6 As the 
number of sources of indeterminate error increases, the results more closely 
approximate a normal distribution. The central limit theorem holds true 
even if the individual sources of indeterminate error are not normally dis-
tributed. The chief limitation to the central limit theorem is that the sources 
of indeterminate error must be independent and of similar magnitude so 
that no one source of error dominates the final distribution. 

An additional feature of the central limit theorem is that a distribu-
tion  of means for samples drawn from a population with any distribution 
will closely approximate a normal distribution if the size of the samples is 
large enough. Figure 4.11 shows the distribution for two samples of 10 000 
drawn from a uniform distribution in which every value between 0 and 1 
occurs with an equal frequency. For samples of size n = 1, the resulting dis-
tribution closely approximates the population’s uniform distribution. The 
distribution of the means for samples of size n = 10, however, closely ap-
proximates a normal distribution.

6 Mark, H.; Workman, J. Spectroscopy 1988, 3, 44–48.
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Figure 4.10 The blue bars show 
a histogram for the data in Table 
4.13. The height of a bar corre-
sponds to the percentage of pennies 
within the mass intervals shown in 
Table 4.14. Superimposed on the 
histogram is a normal distribution 
curve assuming that m and s2 for 
the population are equivalent to 
X  and s2 for the sample. The total 
area of the histogram’s bars and the 
area under the normal distribution 
curve are equal.

You might reasonably ask whether this 
aspect of the central limit theorem is im-
portant as it is unlikely that we will com-
plete 10 000 analyses, each of which is 
the average of 10 individual trials. This is 
deceiving. When we acquire a sample for 
analysis—a sample of soil, for example—
it consists of many individual particles, 
each of which is an individual sample of 
the soil. Our analysis of the gross sample, 
therefore, is the mean for this large num-
ber of individual soil particles. Because of 
this, the central limit theorem is relevant.

Histogram of data 
with approximated 
normal distribution.



THE CENTRAL LIMIT 
THEOREM

• The reason that the approximation of the normal distribution 
works is due to the Central Limit Theorem.

• The Central Limit Theorem states that when a system is 
subject to a variety of indeterminate errors, the results of 
multiple measurements approximate a normal distribution.

• As such samples can reflect, with some degree of confidence, 
attributes of the population, such as the mean and variance.



CONFIDENCE INTERVALS
• As the sample mean does not truly represent the population mean, 

we can use confidence intervals to indicate the likely range where 
the true mean might lie.

• Confidence intervals can be determined with different levels of 
certainty (e.g. 95%, 90%, 50%,…)



CALCULATING CONFIDENCE 
INTERVALS

• The determination of the confidence 
interval can be done with a few key 
pieces of data from the sample:

• The sample mean (x)̄

• The sample standard deviation (s)

• The number of measurements (n)

• A t value, based on the degrees of 
freedom (n-1) and the desired level 
of certainty (90%, 95%,…)
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Example 4.15
What are the 95% confidence intervals for the two samples of pennies in 
Table 4.11?

SOLUTION

The mean and standard deviation for first experiment are, respectively, 
3.117 g and 0.051 g. Because the sample consists of seven measurements, 
there are six degrees of freedom. The value of t from Table 4.15, is 2.447. 
Substituting into equation 4.12 gives

µ g g g g= ±
×

= ±3 117 2 447 0 051
7

3 117 0 047. . . . .

For the second experiment the mean and standard deviation are 3.081 g 
and 0.073 g, respectively, with four degrees of freedom. The 95% confi-
dence interval is

µ g g g g= ±
×

= ±3 081 2 776 0 037
5

3 081 0 046. . . . .

Based on the first experiment, there is a 95% probability that the popu-
lation’s mean is between 3.070 to 3.164 g. For the second experiment, 
the 95% confidence interval spans 3.035 g–3.127 g. The two confidence 
intervals are not identical, but the mean for each experiment is contained 
within the other experiment’s confidence interval. There also is an appre-
ciable overlap of the two confidence intervals. Both of these observations 
are consistent with samples drawn from the same population. 

Table 4.15 Values of t for a 95% Confidence Interval
Degrees of 
Freedom t

Degrees of 
Freedom t

1 12.706 12 2.179
2 4.303 14 2.145
3 3.181 16 2.120
4 2.776 18 2.101
5 2.571 20 2.086
6 2.447 30 2.042
7 2.365 40 2.021
8 2.306 60 2.000
9 2.262 100 1.984
10 2.228 ∞ 1.960

Our comparison of these two confidence 
intervals is rather vague and unsatisfying. 
We will return to this point in the next 
section, when we consider a statistical ap-
proach to comparing the results of experi-
ments.



SAMPLE CALCULATIONS
Trails Student A Student B

1 14.602 14.408
2 14.782 14.517
3 14.668 14.322
4 14.534 14.477
5 14.721 14.398
6 14.596

Average 14.6505 14.4244
Std. Dev. 0.091 0.075

Two students (A & B) have made 
measurements of samples taken 
from the same population.

Determine the 95% confidence 
interval for each of their sample 
means. 97Chapter 4 Evaluating Analytical Data
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