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Regardless of the problem on which an analytical chemist is working, its solution requires 
a knowledge of chemistry and the ability to apply that knowledge. For example, an analytical 
chemist studying the effect of pollution on spruce trees needs to know, or know where to 
find, the chemical differences between p‑hydroxybenzoic acid and p‑hydroxyacetophenone, 
two common phenols found in the needles of spruce trees. 

Your ability to “think as a chemist” is a product of your experience in the classroom and 
in the laboratory. The material in this text assumes your familiarity with topics from earlier 
courses. Because of its importance to analytical chemistry, this chapter provides a review of 
equilibrium chemistry. Much of the material in this chapter should be familiar to you, although 
some topics—ladder diagrams and activity, for example—afford you with new ways to look at 
equilibrium chemistry.
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6A Reversible Reactions and Chemical Equilibria
In 1798, the chemist Claude Berthollet accompanied Napoleon’s military 
expedition to Egypt. While visiting the Natron Lakes, a series of salt water 
lakes carved from limestone, Berthollet made an observation that led him 
to an important discovery. When exploring the lake’s shore Berthollet found 
deposits of Na2CO3, a result he found surprising. Why did Berthollet find 
this result surprising and how did it contribute to an important discovery? 
Answering these questions provides an example of chemical reasoning and 
introduces us to the topic of this chapter.

At the end of the 18th century, chemical reactivity was explained in 
terms of elective affinities.1 If, for example, substance A reacts with sub‑
stance BC to form AB

A BC AB C+ → +

then A and B were said to have an elective affinity for each other. With elec‑
tive affinity as the driving force for chemical reactivity, reactions were un‑
derstood to proceed to completion and to proceed in one direction. Once 
formed, the compound AB could not revert to A and BC.

AB C A BC+ → +

From his experience in the laboratory, Berthollet knew that adding 
solid Na2CO3 to a solution of CaCl2 produces a precipitate of CaCO3.

Na CO CaCl NaCl CaCO2 3 2 3( ) ( ) ( ) ( )s aq aq s+ → +2

Understanding this, Berthollet was surprised to find solid Na2CO3 forming 
on the edges of the lake, particularly since the deposits formed only when 
the lake’s salt water was in contact with limestone, CaCO3. Where the lake 
was in contact with clay soils, there was little or no Na2CO3.  

Berthollet’s important insight was recognizing that the chemistry leading 
to the formation of Na2CO3 is the reverse of that seen in the laboratory.

2NaCl CaCO Na CO CaCl3 2 3 2( ) ( ) ( ) ( )aq s s aq+ → +

Using this insight Berthollet reasoned that the reaction is reversible, and 
that the relative amounts of NaCl, CaCO3, Na2CO3, and CaCl2 determine 
the direction in which the reaction occurs and the final composition of the 
reaction mixture. We recognize a reaction’s ability to move in both direc‑
tions by using a double arrow when writing the reaction.

Na CO CaCl NaCl CaCO2 3 2 3( ) ( ) ( ) ( )s aq aq s+ + 2

Berthollet’s reasoning that reactions are reversible was an important 
step in understanding chemical reactivity. When we mix together solutions 
of Na2CO3 and CaCl2 they react to produce NaCl and CaCO3. If during 

1 Quilez, J. Chem. Educ. Res. Pract. 2004, 5, 69–87 (http://www.uoi.gr/cerp).

Napoleon’s expedition to Egypt was the 
first to include a significant scientific pres‑
ence. The Commission of Sciences and 
Arts, which included Claude Berthollet, 
began with 151 members, and operated 
in Egypt for three years.  In addition to 
Berthollet’s work, other results included 
a publication on mirages, and detailed 
catalogs of plant and animal life, mineral‑
ogy, and archeology. For a review of the 
Commission’s contributions, see Gillispie, 
C. G. “Scientific Aspects of the French 
Egyptian Expedition, 1798‑1801,” Proc. 
Am. Phil. Soc. 1989, 133, 447–474.

Natron is another name for the mineral 
sodium carbonate, Na2CO3•10H2O. In 
nature, it usually contains impurities of 
NaHCO3, and NaCl. In ancient Egypt, 
natron was mined and used for a variety 
of purposes, including as a cleaning agent 
and in mummification.

http://www.uoi.gr/cerp
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the reaction we monitor the mass of Ca2+ remaining in solution and the 
mass of CaCO3 that precipitates, the result looks something like Figure 
6.1. At the start of the reaction the mass of Ca2+ decreases and the mass of 
CaCO3 increases. Eventually the reaction reaches a point after which there 
is no further change in the amounts of these species. Such a condition is 
called a state of equilibrium. 

Although a system at equilibrium appears static on a macroscopic level, 
it is important to remember that the forward and reverse reactions continue 
to occur. A reaction at equilibrium exists in a steady‑state, in which the 
rate at which a species forms equals the rate at which it is consumed.

6B Thermodynamics and Equilibrium Chemistry
Thermodynamics is the study of thermal, electrical, chemical, and mechani‑
cal forms of energy. The study of thermodynamics crosses many disciplines, 
including physics, engineering, and chemistry. Of the various branches 
of thermodynamics, the most important to chemistry is the study of the 
change in energy during a chemical reaction.

Consider, for example, the general equilibrium reaction shown in equa‑
tion 6.1, involving the species A, B, C, and D, with stoichiometric coef‑
ficients a, b, c, and d.

a b c dA B C D+ + 6.1
By convention, we identify species on the left side of the equilibrium ar‑
row as reactants, and those on the right side of the equilibrium arrow as 
products. As Berthollet discovered, writing a reaction in this fashion does 
not guarantee that the reaction of A and B to produce C and D is favorable. 
Depending on initial conditions, the reaction may move to the left, move 
to the right, or be in a state of equilibrium. Understanding the factors that 
determine the reaction’s final, equilibrium position is one of the goals of 
chemical thermodynamics.

The direction of a reaction is that which lowers the overall free energy. 
At a constant temperature and pressure, typical of many bench‑top chemi‑
cal reactions, a reaction’s free energy is given by the Gibb’s free energy 
function  

∆ ∆ ∆G H T S= − 6.2

where T is the temperature in kelvin, and ∆G, ∆H, and ∆S are the differ‑
ences in the Gibb's free energy, the enthalpy, and the entropy between the 
products and the reactants. 

Enthalpy is a measure of the flow of energy, as heat, during a chemical 
reaction. Reactions releasing heat have a negative ∆H and are called exo‑
thermic. Endothermic reactions absorb heat from their surroundings and 
have a positive ∆H. Entropy is a measure of energy that is unavailable for 
useful, chemical work. The entropy of an individual species is always posi‑

Figure 6.1 Graph showing how 
the masses of Ca2+ and CaCO3 
change as a function of time dur‑
ing the precipitation of CaCO3. 
The dashed line indicates when 
the reaction reaches equilibrium. 
Prior to equilibrium the masses of 
Ca2+ and CaCO3 are changing; 
after reaching equilibrium, their 
masses remain constant.

For obvious reasons, we call the double ar‑
row,  , an equilibrium arrow.

For many students, entropy is the most 
difficult topic in thermodynamics to un‑
derstand. For a rich resource on entropy, 
visit the following web site: http://www.
entropysite.com/.

Mass

Time

Ca2+

CaCO3

equilibrium reached

http://www.entropysite.com/
http://www.entropysite.com/
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tive and tends to be larger for gases than for solids, and for more complex 
molecules than for simpler molecules. Reactions producing a large number 
of simple, gaseous products usually have a positive ∆S.

The sign of ∆G indicates the direction in which a reaction moves to 
reach its equilibrium position. A reaction is thermodynamically favorable 
when its enthalpy, ∆H, decreases and its entropy, ∆S, increases. Substitut‑
ing the inequalities ∆H < 0 and ∆S > 0 into equation 6.2 shows that a 
reaction is thermodynamically favorable when ∆G is negative. When ∆G is 
positive the reaction is unfavorable as written (although the reverse reaction 
is favorable). A reaction at equilibrium has a ∆G of zero.

As a reaction moves from its initial, non‑equilibrium condition to its 
equilibrium position, the value of ∆G approaches zero. At the same time, 
the chemical species in the reaction experience a change in their concentra‑
tions. The Gibb's free energy, therefore, must be a function of the concen‑
trations of reactants and products. 

As shown in equation 6.3, we can split the Gibb’s free energy into two 
terms.

∆ ∆ oG G RT Q= + ln 6.3

The first term, ∆G o, is the change in Gibb’s free energy when each species 
in the reaction is in its standard state, which we define as follows: gases 
with partial pressures of 1 atm, solutes with concentrations of 1 mol/L, and 
pure solids and pure liquids. The second term, which includes the reaction 
quotient, Q, accounts for non‑standard state pressures or concentrations. 
For reaction 6.1 the reaction quotient is

Q
c d

a b
=

[ ] [ ]
[ ] [ ]
C D
A B

6.4

where the terms in brackets are the concentrations of the reactants and 
products. Note that we define the reaction quotient with the products are 
in the numerator and the reactants are in the denominator. In addition, we 
raise the concentration of each species to a power equivalent to its stoichi‑
ometry in the balanced chemical reaction. For a gas, we use partial pressure 
in place of concentration. Pure solids and pure liquids do not appear in the 
reaction quotient.

At equilibrium the Gibb’s free energy is zero, and equation 6.3 simpli‑
fies to

∆ oG RT K=− ln

where K is an equilibrium constant that defines the reaction’s equilib‑
rium position. The equilibrium constant is just the numerical value of the 
reaction quotient, Q, when substituting equilibrium concentrations into 
equation 6.4.

Although not shown here, each concen‑
tration term in equation 6.4 is divided by 
the corresponding standard state concen‑
tration; thus, the term [C]c really means

[C]o

[C]* 4
c

where [C]o is the standard state concen‑
tration for C. There are two important 
consequences of this: (1) the value of Q is 
unitless; and (2) the ratio has a value of 1 
for a pure solid or a pure liquid. This is the 
reason that pure solids and pure liquids do 
not appear in the reaction quotient.

Equation 6.2 shows that the sign of ∆G 
depends on the signs of ∆H and ∆S, and 
the temperature, T. The following table 
summarizes the possibilities.

∆H ∆S ∆G 

‑ + ∆G < 0 at all temperatures

‑ ‑ ∆G < 0 at low temperatures

+ + ∆G < 0 at high temperatures

+ ‑ ∆G > 0 at all temperatures
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K
c d

a b
=

[ ] [ ]

[ ] [ ]

C D

A B
eq eq

eq eq

6.5

Here we include the subscript “eq” to indicate a concentration at equilib‑
rium. Although we usually will omit the “eq” when writing equilibrium 
constant expressions, it is important to remember that the value of K is 
determined by equilibrium concentrations.

6C Manipulating Equilibrium Constants
We will take advantage of two useful relationships when working with equi‑
librium constants. First, if we reverse a reaction’s direction, the equilibrium 
constant for the new reaction is simply the inverse of that for the original 
reaction. For example, the equilibrium constant for the reaction

A B B
AB

A B
2+ =2 2 1 2

 A K
[ ]

[ ][ ]

is the inverse of that for the reaction

A K K
A

B A B
][B

AB2 2 1

1
2

2

2 + =( ) =
− [ ]

[ ]

Second, if we add together two reactions to obtain a new reaction, the 
equilibrium constant for the new reaction is the product of the equilibrium 
constants for the original reactions.

A C AC
[AC]

[A][C]3+ = K

AC C AC
[AC ]

[AC][C]2 4
2+ = K

A C AC
[AC]

[A][C]
[AC ]

[AC][C]

[A2+ = × = × =2 2 5 3 4 K K K
CC ]

[A][C]
2

2

Example 6.1

Calculate the equilibrium constant for the reaction

2 3A B C D+ +

given the following information

As written, equation 6.5 is a limiting law 
that applies only to infinitely dilute solu‑
tions where the chemical behavior of one 
species is unaffected by the presence of 
other species. Strictly speaking, equation 
6.5 should be written in terms of activities 
instead of concentrations. We will return 
to this point in Section 6I. For now, we 
will stick with concentrations as this con‑
vention is already familiar to you.
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Rxn 1: A B
Rxn 2: A E C D F
Rxn

+ =

+ + + =





D K

K
1

2

0 40
0 10
.
.

3: C E B

Rxn 4: F C D B

+ =

+ + =





K

K
3

4

2 0

5 0

.

.

Solution
The overall reaction is equivalent to 

Rxn 1 Rxn 2 Rxn 3 Rxn 4+ − +

Subtracting a reaction is equivalent to adding the reverse reaction; thus, 
the overall equilibrium constant is 

K
K K K

K
=

× ×
=

× ×
=1 2 4

3

0 40 0 10 5 0
2 0

0 10
. . .

.
.

Another common name for an oxidation–
reduction reaction is a redox reaction, 
where “red” is short for reduction and “ox” 
is short for oxidation.

Practice Exercise 6.1
Calculate the equilibrium constant for the reaction

C D F A B+ + + 2 3

using the equilibrium constants from Example 6.1.

Click here to review your answer to this exercise.

6D Equilibrium Constants for Chemical Reactions
Several types of chemical reactions are important in analytical chemistry, 
either in preparing a sample for analysis or during the analysis. The most 
significant of these are: precipitation reactions, acid–base reactions, com‑
plexation reactions, and oxidation–reduction reactions. In this section we 
review these reactions and their equilibrium constant expressions.

6D.1 Precipitation Reactions

In a precipitation reaction, two or more soluble species combine to form 
an insoluble precipitate. The most common precipitation reaction is a 
metathesis reaction, in which two soluble ionic compounds exchange parts. 
For example, if we add a solution of lead nitrate, Pb(NO3)2, to a solution of 
potassium chloride, KCl, the result is a precipitate of lead chloride, PbCl2. 
We usually write a precipitation reaction as a net ionic equation, showing 
only the precipitate and those ions forming the precipitate. Thus, the pre‑
cipitation reaction for PbCl2 is 

Pb Cl PbCl2+ −+( ) ( ) ( )aq aq s2 2
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When writing an equilibrium constant for a precipitation reaction, we focus 
on the precipitate’s solubility. Thus, for PbCl2, the solubility reaction is

PbCl Pb Cl2
2 2( ) ( ) ( )s aq aq

+ −+

and its equilibrium constant, which we call the solubility product, Ksp, 
is

K sp Pb Cl= = ×+ − −[ ][ ] .2 2 51 7 10 6.6

Even though it does not appear in the Ksp expression, it is important to 
remember that equation 6.6 is valid only if PbCl2(s) is present and in equi‑
librium with Pb2+ and Cl–. You will find values for selected solubility prod‑
ucts in Appendix 10.

6D.2 Acid–Base Reactions

A useful definition of acids and bases is that independently introduced in 
1923 by Johannes Brønsted and Thomas Lowry. In the Brønsted‑Lowry 
definition, an acid is a proton donor and a base is a proton acceptor. Note 
the connection in these definitions—defining a base as a proton acceptor 
implies that there is an acid available to donate the proton. For example, in 
reaction 6.7 acetic acid, CH3COOH, donates a proton to ammonia, NH3, 
which serves as the base.

CH COOH NH NH CH COO3 3 3( ) ( ) ( ) ( )aq aq aq aq+ ++ −
 4 6.7

When an acid and a base react, the products are a new acid and a new 
base. For example, the acetate ion, CH3COO–, in reaction 6.7 is a base that 
can accept a proton from the acidic ammonium ion, NH4

+, forming acetic 
acid and ammonia. We call the acetate ion the conjugate base of acetic acid, 
and the ammonium ion is the conjugate acid of ammonia.

Strong and Weak acidS

The reaction of an acid with its solvent (typically water) is an acid disso‑
ciation reaction. We divide acids into two categories—strong and weak—
based on their ability to donate a proton to the solvent. A strong acid, such 
as HCl, almost completely transfers its proton to the solvent, which acts 
as the base.

HCl H O H O Cl2 3( ) ( ) ( ) ( )aq l aq aq+ → ++ −

We use a single arrow (→ ) in place of the equilibrium arrow ( ) be‑
cause we treat HCl as if it completely dissociates in aqueous solutions. In 
water, the common strong acids are hydrochloric acid (HCl), hydroiodic 
acid (HI), hydrobromic acid (HBr), nitric acid (HNO3), perchloric acid 
(HClO4), and the first proton of sulfuric acid (H2SO4).

In a different solvent, HCl may not be a 
strong acid. For example, HCl does not 
act as a strong acid in methanol. In this 
case we use the equilibrium arrow when 
writing the acid–base reaction.

HCl CH OH CH OH Cl3 3 2( ) ( ) ( ) ( )aq l aq aq+ ++ −




216 Analytical Chemistry 2.0

A weak acid, of which aqueous acetic acid is one example, does not 
completely donate its acidic proton to the solvent. Instead, most of the acid 
remains undissociated, with only a small fraction present as the conjugate 
base.

CH COOH H O H O CH COO3 2 3 3( ) ( ) ( ) ( )aq l aq aq+ ++ −


The equilibrium constant for this reaction is an acid dissociation con‑
stant, Ka, which we write as  

K a
3 3

3

CH COO H O
CH COOH

= = ×
− +

−[ ][ ]
[ ]

.1 75 10 5

The magnitude of Ka provides information about a weak acid’s relative 
strength, with a smaller Ka corresponding to a weaker acid. The ammo‑
nium ion, NH4

+, for example, with a Ka of 5.702 × 10–10, is a weaker acid 
than acetic acid.

Monoprotic weak acids, such as acetic acid, have only a single acidic 
proton and a single acid dissociation constant. Other acids, such as phos‑
phoric acid, have more than one acidic proton, each characterized by an 
acid dissociation constant. We call such acids polyprotic weak acids. Phos‑
phoric acid, for example, has three acid dissociation reactions and three acid 
dissociation constants.

H PO H O H O H PO3 4 2 3 2( ) ( ) ( ) ( )aq l aq aq+ ++ −
 4  

K a1
2 3

3 4

H PO H O
[H PO

= = ×
− +

−[ ][ ]
]

.4 37 11 10

H PO H O H O HPO2 2 34 4
2− + −+ +( ) ( ) ( ) ( )aq l aq aq

K a2
3

2

HPO H O
[H PO

= = ×
− +

−
−[ ][ ]

]
.4

2

4

86 32 10

HPO H O H O PO2 34
2

4
3− + −+ +( ) ( ) ( ) ( )aq l aq aq

K a3
3PO H O

[HPO
= = ×

− +

−
−[ ][ ]

]
.4

3

4
2

134 5 10

The decrease in the acid dissociation constants from Ka1 to Ka3 tells us 
that each successive proton is harder to remove. Consequently, H3PO4 is a 
stronger acid than H2PO4

–, and H2PO4
– is a stronger acid than HPO4

2–.

Earlier we noted that we omit pure sol‑
ids and pure liquids from equilibrium 
constant expressions. Because the solvent, 
H2O, is not pure, you might wonder why 
we have not included it in acetic acid’s 
Ka expression. Recall that we divide each 
term in the equilibrium constant expres‑
sion by its standard state value. Because 
the concentration of H2O is so large—it 
is approximately 55.5 mol/L—its concen‑
tration as a pure liquid and as a solvent are 
virtually identical. The ratio

[H O]

[H O]

2

2

o

is essentially 1.00.
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Strong and Weak BaSeS

The most common example of a strong base is an alkali metal hydroxide, 
such as sodium hydroxide, NaOH, which completely dissociates to pro‑
duce hydroxide ion.

NaOH Na OH( ) ( ) ( )s aq aq→ ++ −

A weak base, such as the acetate ion, CH3COO–, only partially accepts 
a proton from the solvent, and is characterized by a base dissociation 
constant, Kb. For example, the base dissociation reaction and the base 
dissociation constant for the acetate ion are 

CH COO H O OH CH COOH3 2 3
− −+ +( ) ( ) ( ) ( )aq l aq aq

K b
3

3

CH COOH OH
CH COO

= = ×
−

−
−[ ][ ]

[ ]
.5 71 10 10

A polyprotic weak base, like a polyprotic acid, has more than one base dis‑
sociation reaction and more than one base dissociation constant.

amphiprotic SpecieS

Some species can behave as either a weak acid or as a weak base. For example, 
the following two reactions show the chemical reactivity of the bicarbonate 
ion, HCO3

–, in water. 

HCO H O H O CO2 33 3
2− + −+ +( ) ( ) ( ) ( )aq l aq aq 6.8

HCO H O OH H CO2 33 2
− −+ +( ) ( ) ( ) ( )aq l aq aq 6.9

A species that is both a proton donor and a proton acceptor is called am‑
phiprotic. Whether an amphiprotic species behaves as an acid or as a base 
depends on the equilibrium constants for the competing reactions. For 
bicarbonate, the acid dissociation constant for reaction 6.8

K a2
3CO H O

HCO
= = ×

− +

−
−[ ][ ]

[ ]
.3

2

3

114 69 10

is smaller than the base dissociation constant for reaction 6.9.

K b2
2 3H CO OH

HCO
= = ×

−

−
−[ ][ ]

[ ]
.

3

82 25 10

Because bicarbonate is a stronger base than it is an acid, we expect an aque‑
ous solution of HCO3

– to be basic.
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diSSociation of Water

Water is an amphiprotic solvent because it can serve as an acid or as a base. 
An interesting feature of an amphiprotic solvent is that it is capable of react‑
ing with itself in an acid–base reaction.

2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+ 6.10

We identify the equilibrium constant for this reaction as water’s dissociation 
constant, Kw,

K w 3H O OH= = ×+ − −[ ][ ] .1 00 10 14 6.11

which has a value of 1.0000 × 10–14 at a temperature of 24 oC. The val‑
ue of Kw varies substantially with temperature. For example, at 20 oC 
Kw is 6.809 × 10–15, while at 30 oC Kw is 1.469 × 10–14. At 25 oC, Kw is 
1.008 × 10–14, which is sufficiently close to 1.00 × 10–14 that we can use 
the latter value with negligible error.

An important consequence of equation 6.11 is that the concentration 
of H3O+ and the concentration of OH– are related. If we know [H3O+] for 
a solution, then we can calculate [OH–] using equation 6.11.

Example 6.2

What is the [OH–] if the [H3O+] is 6.12 × 10‑5 M?

Solution

[ ]
[ ]

.
.

.OH
H O

w

3

−
+

−

−
−= =

×
×

= ×
K 1 00 10

6 12 10
1 63 10

14

5
110

the ph Scale

Equation 6.11 allows us to develop a pH scale that indicates a solution’s 
acidity. When the concentrations of H3O+ and OH– are equal a solution is 
neither acidic nor basic; that is, the solution is neutral. Letting

[ ] [ ]H O OH3
+ −=

substituting into equation 6.11

K w 3H O= = ×+ −[ ] .2 141 00 10

and solving for [H3O+] gives

[ ] . .H O3
+ − −= × = ×1 00 10 1 00 1014 7

pH = –log[H3O+]
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A neutral solution has a hydronium ion concentration of 1.00 × 10‑7 M 
and a pH of 7.00. For a solution to be acidic the concentration of H3O+ 
must be greater than that for OH–, which means that

[ ] .H O M3
+ −> ×1 00 10 7

The pH of an acidic solution, therefore, must be less than 7.00. A basic 
solution, on the other hand, has a pH greater than 7.00. Figure 6.2 shows 
the pH scale and pH values for some representative solutions.

taBulating ValueS for ka and kB

A useful observation about acids and bases is that the strength of a base is 
inversely proportional to the strength of its conjugate acid. Consider, for 
example, the dissociation reactions of acetic acid and acetate.

CH COOH H O H O CH COO3 2 3 3( ) ( ) ( ) ( )aq l aq aq+ ++ −
 6.12

CH COO H O OH CH COOH3 2 3
− −+ +( ) ( ) ( ) ( )aq l aq aq 6.13

Adding together these two reactions gives the reaction

2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+

for which the equilibrium constant is Kw. Because adding together two 
reactions is equivalent to multiplying their respective equilibrium con‑
stants, we may express Kw as the product of Ka for CH3COOH and Kb for 
CH3COO–. 

K K Kw a,CH COOH b,CH COO3 3
= × −

For any weak acid, HA, and its conjugate weak base, A–, we can generalize 
this to the following equation. 

K K Kw a,HA b,A
= × − 6.14

The relationship between Ka and Kb for a conjugate acid–base pair simpli‑
fies our tabulation of acid and base dissociation constants. Appendix 11 
includes acid dissociation constants for a variety of weak acids. To find the 
value of Kb for a weak base, use equation 6.14 and the Ka value for its cor‑
responding weak acid.

Example 6.3

Using Appendix 11, calculate values for the following equilibrium con‑
stants.
(a) Kb for pyridine, C5H5N
(b) Kb for dihydrogen phosphate, H2PO4

–

Figure 6.2 Scale showing the pH 
value for representative solutions. 
Milk of Magnesia is a saturated 
solution of Mg(OH)2.

A common mistake when using equation 
6.14 is to forget that it applies only to a 
conjugate acid–base pair.

1

2

3
4

5

6
7
8

9

10
11

12
13
14

Gastric Juice

Vinegar

“Pure” Rain
Milk

Neutral
Blood

Seawater

Milk of Magnesia

Household Bleach

pH
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Solution

(a) K
K

Kb, C H N
w

a, C H NH
5 5

5 5
+

= =
×
×

−

−

1 00 10
5 90 10

14

6

.
.

== × −1 69 10 9.

(b) K
K

Kb, H PO
w

a, H PO
2

3 4

4

1 00 10
7 11 10

14

3− = =
×
×

=
−

−

.
.

11 41 10 12. × −

When finding the Kb value for polyprotic 
weak base, you must be careful to choose 
the correct Ka value. Remember that 
equation 6.14 applies only to a conju‑
gate acid–base pair. The conjugate acid of 
H2PO4

– is H3PO4, not HPO4
2–.

Practice Exercise 6.2
Using Appendix 11, calculate the Kb values for hydrogen oxalate, HC2O4

–, 
and oxalate, C2O4

2–.

Click here to review your answer to this exercise.

6D.3 Complexation Reactions

A more general definition of acids and bases was proposed in1923 by G. 
N. Lewis. The Brønsted‑Lowry definition of acids and bases focuses on an 
acid’s proton‑donating ability and a base’s proton‑accepting ability.  Lewis 
theory, on the other hand, uses the breaking and forming of covalent bonds 
to describe acid–base characteristics. In this treatment, an acid is an elec‑
tron pair acceptor and a base in an electron pair donor. Although we can 
apply Lewis theory to the treatment of acid–base reactions, it is more useful 
for treating complexation reactions between metal ions and ligands.

The following reaction between the metal ion Cd2+ and the ligand 
NH3 is typical of a complexation reaction.

Cd :NH Cd :NH2
3 3 4

24+ ++( ) ( ) ( )( )aq aq aq 6.15

The product of this reaction is a metal–ligand complex. In writing this 
reaction we show ammonia as :NH3, using a pair of dots to emphasize the 
pair of electrons it donates to Cd2+. In subsequent reactions we will omit 
this notation.

metal-ligand formation conStantS

We characterize the formation of a metal–ligand complex by a formation 
constant, Kf. The complexation reaction between Cd2+ and NH3, for ex‑
ample, has the following equilibrium constant.

K f

Cd NH
Cd NH

= = ×
+

+

[ ( ) ]
[ ][ ]

.3 4
2

2
3

4
75 5 10 6.16

The reverse of reaction 6.15 is a dissociation reaction, which we characterize 
by a dissociation constant, Kd, that is the reciprocal of Kf.

Many complexation reactions occur in a stepwise fashion. For example, 
the reaction between Cd2+ and NH3 involves four successive reactions. 
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Cd NH Cd NH2
3 3

2+ ++( ) ( ) ( )( )aq aq aq 6.17

Cd NH NH Cd NH( ) ( )( ) ( ) ( )3
2

3 3 2
2+ ++aq aq aq 6.18

Cd NH NH Cd NH( ) ( )( ) ( ) ( )3 2
2

3 3 3
2+ ++aq aq aq 6.19

Cd NH NH Cd NH( ) ( )( ) ( ) ( )3 3
2

3 3 4
2+ ++aq aq aq 6.20

To avoid ambiguity, we divide formation constants into two categories. 
Stepwise formation constants, which we designate as Ki for the ith step, 
describe the successive addition of one ligand to the metal–ligand com‑
plex from the previous step. Thus, the equilibrium constants for reactions 
6.17–6.20 are, respectively, K1, K2, K3, and K4. Overall, or cumulative 
formation constants, which we designate as bi, describe the addition of 
i ligands to the free metal ion. The equilibrium constant in equation 6.16 
is correctly identified as b4, where

β4 1 2 3 4= × × ×K K K K

In general

βi iK K K= × × ×1 2 

Stepwise and overall formation constants for selected metal–ligand com‑
plexes are in Appendix 12.

metal-ligand complexation and SoluBility

A formation constant characterizes the addition of one or more ligands to 
a free metal ion. To find the equilibrium constant for a complexation reac‑
tion involving a solid, we combine appropriate Ksp and Kf expressions. For 
example, the solubility of AgCl increases in the presence of excess chloride 
as the result of the following complexation reaction.

AgCl Cl AgCl( ) ( ) ( )s aq aq+ − −
 2 6.21

We can write this reaction as the sum of three other reactions with known 
equilibrium constants—the solubility of AgCl, described by its Ksp

AgCl Ag Cl( ) ( ) ( )s aq aq

+ −+

and the stepwise formation of AgCl2
–, described by K1 and K2.

Ag Cl AgCl+ −+( ) ( ) ( )aq aq aq

AgCl Cl AgCl( ) ( ) ( )aq aq aq+ − −
 2

The equilibrium constant for reaction 6.21, therefore, is Ksp × K1 × K2.
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Example 6.4

Determine the value of the equilibrium constant for the reaction

PbCl PbCl2 2( ) ( )s aq

Solution

We can write this reaction as the sum of three other reactions. The first of 
these reactions is the solubility of PbCl2(s), described by its Ksp reaction.

PbCl Pb Cl2
2 2( ) ( ) ( )s aq aq

+ −+

The remaining two reactions are the stepwise formation of PbCl2(aq), de‑
scribed by K1 and K2.

Pb Cl PbCl2+ − ++( ) ( ) ( )aq aq aq

PbCl Cl PbCl2
+ −+( ) ( ) ( )aq aq aq

Using values for Ksp, K1, and K2 from Appendix 10 and Appendix 12, we 
find that the equilibrium constant is

K K K K= × × = × × × = ×− −
sp 1 2

5 31 7 10 38 9 1 62 1 1 10( . ) . . .

Practice Exercise 6.3
What is the equilibrium constant for the following reaction? You will find 
appropriate equilibrium constants in Appendix 10 and Appendix 11. 

AgBr S O Ag(S O Br2 2( ) ( ) ( ) ( ))s aq aq aq+ +− − −2 3
2

3
3



Click here to review your answer to this exercise.
6D.4 Oxidation–Reduction (Redox) Reactions

An oxidation–reduction reaction occurs when electrons move from one 
reactant to another reactant. As a result of this electron transfer, these reac‑
tants undergo a change in oxidation state. Those reactants that experience 
an increase in oxidation state undergo oxidation, and those experiencing a 
decrease in oxidation state undergo reduction. For example, in the follow‑
ing redox reaction between Fe3+ and oxalic acid, H2C2O4, iron is reduced 
because its oxidation state changes from +3 to +2.

2 2

2 2

3

2

Fe H C O H O

Fe CO
2 2 4 2

2

+

+

+ +

+

( ) ( ) ( )

( )

aq aq l

aq



(( ) ( )g aq+ +2H O3
6.22

Oxalic acid, on the other hand, undergoes oxidation because the oxidation 
state for carbon increases from +3 in H2C2O4 to +4 in CO2.
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We can divide a redox reaction, such as reaction 6.22, into separate 
half‑reactions that show the oxidation and the reduction processes.

H C O H O CO H O2 2 4 2 2 3( ) ( ) ( ) ( )aq l g aq e+ + + −+2 2 2 2

Fe Fe3 2+ − ++( ) ( )aq e aq

It is important to remember, however, that an oxidation reaction and a 
reduction reaction occur as a pair. We formalize this relationship by iden‑
tifying as a reducing agent the reactant undergoing oxidation, because 
it provides the electrons for the reduction half‑reaction. Conversely, the 
reactant undergoing reduction is an oxidizing agent. In reaction 6.22, 
Fe3+ is the oxidizing agent and H2C2O4 is the reducing agent.

The products of a redox reaction also have redox properties. For example, 
the Fe2+ in reaction 6.22 can be oxidized to Fe3+, while CO2 can be reduced 
to H2C2O4. Borrowing some terminology from acid–base chemistry, Fe2+ 
is the conjugate reducing agent of the oxidizing agent Fe3+, and CO2 is the 
conjugate oxidizing agent of the reducing agent H2C2O4.

thermodynamicS of redox reactionS

Unlike precipitation reactions, acid–base reactions, and complexation reac‑
tions, we rarely express the equilibrium position of a redox reaction using 
an equilibrium constant. Because a redox reaction involves a transfer of 
electrons from a reducing agent to an oxidizing agent, it is convenient to 
consider the reaction’s thermodynamics in terms of the electron. 

For a reaction in which one mole of a reactant undergoes oxidation or 
reduction, the net transfer of charge, Q, in coulombs is

Q nF=

where n is the moles of electrons per mole of reactant, and F is Faraday’s 
constant (96,485 C/mol). The free energy, ∆G, to move this charge, Q, over 
a change in potential, E, is

∆G EQ=

The change in free energy (in kJ/mole) for a redox reaction, therefore, is
∆G nFE=− 6.23

where ∆G has units of kJ/mol. The minus sign in equation 6.23 is the result 
of a difference in the conventions for assigning a reaction’s favorable direc‑
tion. In thermodynamics, a reaction is favored when ∆G is negative, but 
a redox reaction is favored when E is positive. Substituting equation 6.23 
into equation 6.3

− =− +nFE nFE RT Qo ln

and dividing by ‑nF, leads to the well‑known Nernst equation
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E E
RT
nF

Q= −o ln

where Eo is the potential under standard‑state conditions. Substituting ap‑
propriate values for R and F, assuming a temperature of 25 oC (298 K), and 
switching from ln to log gives the potential in volts as

E E
n

Q= −o 0 05916.
log 6.24

Standard potentialS

A redox reaction’s standard potential, E o, provides an alternative way of 
expressing its equilibrium constant and, therefore, its equilibrium position. 
Because a reaction at equilibrium has a ∆G of zero, the potential, E, also 
must be zero at equilibrium. Substituting these values into equation 6.24 
and rearranging provides a relationship between E o and K.

E
n

Ko =
0 05916.

log 6.25

We generally do not tabulate standard potentials for redox reactions. 
Instead, we calculate E o using the standard potentials for the correspond‑
ing oxidation half‑reaction and reduction half‑reaction. By convention, 
standard potentials are provided for reduction half‑reactions. The standard 
potential for a redox reaction, E o, is

E E Eo o
red

o
ox= −

where E ored and E oox are the standard reduction potentials for the reduc‑
tion half‑reaction and the oxidation half‑reaction. 

Because we cannot measure the potential for a single half‑reaction, we 
arbitrarily assign a standard reduction potential of zero to a reference half‑
reaction and report all other reduction potentials relative to this reference. 
The reference half‑reaction is 

2 2 2H O H O H3 2 2
+ −+ +( ) ( ) ( )aq l ge 

Appendix 13 contains a list of selected standard reduction potentials. The 
more positive the standard reduction potential, the more favorable the re‑
duction reaction under standard state conditions. Thus, under standard 
state conditions the reduction of Cu2+ to Cu (E o = +0.3419 V) is more 
favorable than the reduction of Zn2+ to Zn (E o = –0.7618 V).

Example 6.5

Calculate (a) the standard potential, (b) the equilibrium constant, and (c) 
the potential when [Ag+] = 0.020 M and [Cd2+] = 0.050 M, for the fol‑
lowing reaction at 25oC.

ln(x) = 2.303log(x)

A standard potential is the potential when 
all species are in their standard states. You 
may recall that we define standard state 
conditions as: all gases have partial pres‑
sures of 1 atm, all solutes have concentra‑
tions of 1 mol/L, and all solids and  liquids 
are pure. 
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Cd Ag Ag Cd( ) ( ) ( ) ( )s aq s aq+ ++ +2 2 2


Solution 

(a)  In this reaction Cd is undergoing oxidation and Ag+ is undergoing 
reduction. The standard cell potential, therefore, is

E E Eo o
Ag Ag

o
Cd Cd

= − = − − =+ +/ /
. ( . ) .2 0 7996 0 4030 1 20226 V

(b)  To calculate the equilibrium constant we substitute appropriate val‑
ues into equation 6.25.

E Ko V
V

= =1 2026
0 05916

2
.

.
log

 Solving for K gives the equilibrium constant as

log .

.

K

K

=

= ×

40 6558

4 527 1040

(c)  To calculate the potential when [Ag+] is 0.020 M and [Cd2+] is 
0.050 M, we use the appropriate relationship for the reaction quo‑
tient, Q, in equation 6.24.

E E
n

= −
+

+
o V Cd

Ag
0 05916 2

2

.
log

[ ]
[ ]

E = −1 2606
0 05916

2
0 050
0 020 2

.
.

log
( .
( . )

V
V )

E =1 14. V

Practice Exercise 6.4
For the following reaction at 25 oC

5 8

5

2
4

3 2

Fe MnO H

Fe Mn

+ − +

+ +

+ +

+

( ) ( ) ( )

( ) (

aq aq aq

aq



aaq l) ( )+ 4H O2

calculate (a) the standard potential, (b) the equilibrium constant, and (c) 
the potential under these conditions: [Fe2+] = 0.50 M, [Fe3+] = 0.10 M, 
[MnO4

–] = 0.025 M, [Mn2+] = 0.015 M, and a pH of 7.00. See Appen‑
dix 13 for standard state reduction potentials.

Click here to review your answer to this exercise.

When writing precipitation, acid–base, 
and metal–ligand complexation reaction, 
we represent acidity as H3O+. Redox reac‑
tions are more commonly written using 
H+ instead of H3O+. For the reaction in 
Practice Exercise 6.4, we could replace H+ 
with H3O+ and increase the stoichiomet‑
ric coefficient for H2O from 4 to 12.
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6E Le Châtelier’s Principle
At a temperature of 25 oC, acetic acid’s dissociation reaction

CH COOH H O H O CH COO3 2 3 3( ) ( ) ( ) ( )aq l aq aq+ ++ −


has an equilibrium constant of 

K a
3 3

3

CH COO H O
CH COOH

= = ×
− +

−[ ][ ]
[ ]

.1 75 10 5 6.26

Because equation 6.26 has three variables—[CH3COOH], [CH3COO–], 
and [H3O+]—it does not have a unique mathematical solution. Neverthe‑
less, although two solutions of acetic acid may have different values for 
[CH3COOH], [CH3COO–], and [H3O+], each solution must have the 
same value of Ka.

If we add sodium acetate to a solution of acetic acid, the concentration 
of CH3COO– increases, suggesting an apparent increase in the value of Ka. 
Because Ka must remain constant, the concentration of all three species in 
equation 6.26 must change to restore Ka to its original value. In this case, 
a partial reaction of CH3COO– and H3O+ decreases their concentrations, 
producing additional CH3COOH and reestablishing the equilibrium.

The observation that a system at equilibrium responds to an external 
stress by reequilibrating in a manner that diminishes the stress, is formalized 
as Le Châtelier’s principle. One of the most common stresses to a system 
at equilibrium is to change the concentration of a reactant or product. We 
already have seen, in the case of adding sodium acetate to acetic acid, that 
if we add a product to a reaction at equilibrium the system responds by 
converting some of the products into reactants. Adding a reactant has the 
opposite effect, resulting in the conversion of reactants to products.

When we add sodium acetate to a solution of acetic acid, we are directly 
applying the stress to the system. It is also possible to indirectly apply a 
concentration stress. Consider, for example, the solubility of AgCl.

AgCl Ag Cl( ) ( ) ( )s aq aq

+ −+ 6.27

The effect on the solubility of AgCl of adding AgNO3 is obvious, but what 
is the effect of adding a ligand that forms a stable, soluble complex with 
Ag+?  Ammonia, for example, reacts with Ag+ as shown here

Ag NH g(NH+ ++( ) ( ) ( ))aq aq aqA2 3 3 2 6.28

Adding ammonia decreases the concentration of Ag+ as the Ag(NH3)2
+ 

complex forms. In turn, decreasing the concentration of Ag+ increases the 
solubility of AgCl as reaction 6.27 reestablishes its equilibrium position. 
Adding together reaction 6.27 and reaction 6.28 clarifies the effect of am‑
monia on the solubility of AgCl, by showing ammonia as a reactant.

AgCl NH g(NH Cl( ) ( ) ( ) ( ))s aq aq aqA+ ++ −2 3 3 2 6.29

So what is the effect on the solubility of 
AgCl of adding AgNO3? Adding AgNO3 
increases the concentration of Ag+ in solu‑
tion. To reestablish equilibrium, some of 
the Ag+ and Cl– react to form additional 
AgCl; thus, the solubility of AgCl decreas‑
es. The solubility product, Ksp, of course, 
remains unchanged.
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Example 6.6

What happens to the solubility of AgCl if we add HNO3 to the equilib‑
rium solution defined by reaction 6.29?

Solution

Nitric acid is a strong acid, which reacts with ammonia as shown here

HNO NH NH NO3 3 4 3( ) ( ) ( ) ( )aq aq aq aq+ ++ −


Adding nitric acid lowers the concentration of ammonia. Decreasing am‑
monia’s concentration causes reaction 6.29 to move from products to re‑
actants, decreasing the solubility of AgCl.

Increasing or decreasing the partial pressure of a gas is the same as in‑
creasing or decreasing its concentration. Because the concentration of a gas 
depends on its partial pressure, and not on the total pressure of the system, 
adding or removing an inert gas has no effect on a reaction’s equilibrium 
position. 

Most reactions involve reactants and products dispersed in a solvent. 
If we change the amount of solvent by diluting or concentrating the solu‑
tion, then the concentrations of all reactants and products either decrease 
or increase. The effect of simultaneously changing the concentrations of all 
reactants and products is not as intuitively obvious as when changing the 
concentration of a single reactant or product. As an example, let’s consider 
how diluting a solution affects the equilibrium position for the formation 
of the aqueous silver‑amine complex (reaction 6.28). The equilibrium con‑
stant for this reaction is

β2
2

3
2

=
+

+

[ ]

[ ] [ ]

Ag(NH )

Ag NH
3 eq

eq eq

6.30

where we include the subscript “eq” for clarification. If we dilute a portion 
of this solution with an equal volume of water, each of the concentration 
terms in equation 6.30 is cut in half. The reaction quotient, Q, becomes

Q = =
+

+

0 5

0 5 0 5
2

2
3

2

. [ ]

. [ ] ( . ) [ ]

Ag(NH )

Ag NH
3 eq

eq eq

00 5
0 5

4
3

2

3
2 2

.
( . )

[ ]

[ ] [ ]
× =

+

+

Ag(NH )

Ag NH
3 eq

eq eq

β

Because Q is greater than b2, equilibrium is reestablished by shifting the 
reaction to the left, decreasing the concentration of Ag(NH3)2

+. Note that 
the new equilibrium position lies toward the side of the equilibrium reac‑
tion having the greatest number of solute particles (one Ag+ ion and two 
molecules of NH3 versus a single metal‑ligand complex). If we concentrate 
the solution of Ag(NH3)2

+ by evaporating some of the solvent, equilibrium 
is reestablished in the opposite direction. This is a general conclusion that 
we can apply to any reaction. Increasing volume always favors the direc‑

The relationship between pressure and 
concentration can be deduced using the 
ideal gas law. Starting with PV = nRT, we 
solve for the molar concentration

molar concentration = =
n

V

P

RT

Of course, this assumes that the gas is be‑
having ideally, which usually is a reason‑
able assumption under normal laboratory 
conditions.
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tion producing the greatest number of particles, and decreasing volume 
always favors the direction producing the fewest particles. If the number 
of particles is the same on both sides of the reaction, then the equilibrium 
position is unaffected by a change in volume.

6F Ladder Diagrams
When developing or evaluating an analytical method, we often need to 
understand how the chemistry taking place affects our results. Suppose we 
wish to isolate Ag+ by precipitating it as AgCl.  If we also a need to control 
pH, then we must use a reagent that will not adversely affects the solubility 
of AgCl. It is a mistake to add NH3 to the reaction mixture, for example, 
because it increases the solubility of AgCl (reaction 6.29). 

In this section we introduce the ladder diagram as a simple graphi‑
cal tool for evaluating the equilibrium chemistry.2 Using ladder diagrams 
we will be able to determine what reactions occur when combining several 
reagents, estimate the approximate composition of a system at equilibrium, 
and evaluate how a change to solution conditions might affect an analytical 
method.

6F.1 Ladder Diagrams for Acid–Base Equilibria

Let’s use acetic acid, CH3COOH, to illustrate the process of drawing and 
interpreting an acid–base ladder diagram. Before drawing the diagram, 
however, let’s consider the equilibrium reaction in more detail. The equi‑
librium constant expression for acetic acid’s dissociation reaction

CH COOH H O H O CH COO3 2 3 3( ) ( ) ( ) ( )aq l aq aq+ ++ −


 is

K a
3 3

3

CH COO H O
CH COOH

= = ×
− +

−[ ][ ]
[ ]

.1 75 10 5

Taking the logarithm of each term in this equation, and multiplying through 
by –1 gives

− =− − =+
−

log log[ ] log
[ ]
[ ]

.K a 3
3

3

H O
CH COO
CH COOH

4 766

Replacing the negative log terms with p‑functions and rearranging the 
equation, leaves us with the result shown here.

2 Although not specifically on the topic of ladder diagrams as developed in this section, the follow‑
ing sources provide appropriate background information: (a) Runo, J. R.; Peters, D. G. J. Chem. 
Educ. 1993, 70, 708–713; (b) Vale, J.; Fernández‑Pereira, C.; Alcalde, M. J. Chem. Educ. 1993, 
70, 790–795; (c) Fernández‑Pereira, C.; Vale, J. Chem. Educator 1996, 6, 1–18; (d) Fernández‑
Pereira, C.; Vale, J.; Alcalde, M. Chem. Educator 2003, 8, 15–21; (e) Fernández‑Pereira, C.; 
Alcalde, M.; Villegas, R.; Vale, J. J. Chem. Educ. 2007, 84, 520–525.

One of the primary sources of determi‑
nate errors in many analytical methods is 
failing to account for potential chemical 
interferences. 

Ladder diagrams are a great tool for help‑
ing you to think intuitively about analyti‑
cal chemistry. We will make frequent use 
of them in the chapters to follow.
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pH p
CH COO
CH COOHa

3

3

= + =
−

K log
[ ]
[ ]

.4 76 6.31

Equation 6.31 tells us a great deal about the relationship between pH 
and the relative amounts of acetic acid and acetate at equilibrium. If the 
concentrations of CH3COOH and CH3COO– are equal, then equation 
6.31 reduces to

pH p pa a= + = =K Klog( ) .1 4 76

If the concentration of CH3COO– is greater than that of CH3COOH, 
then the log term in equation 6.31 is positive and

pH p pHa> >K or 4 76.

This is a reasonable result because we expect the concentration of the con‑
jugate base, CH3COO–, to increase as the pH increases. Similar reasoning 
shows that the concentration of CH3COOH exceeds that of CH3COO– 

when

pH p pHa< <K or 4 76.

Now we are ready to construct acetic acid’s ladder diagram (Figure 6.3). 
First, we draw a vertical arrow representing the solution’s pH, with smaller 
(more acidic) pH levels at the bottom and larger (more basic) pH levels at 
the top. Second, we draw a horizontal line at a pH equal to acetic acid’s 
pKa value. This line, or step on the ladder, divides the pH axis into regions 
where either CH3COOH or CH3COO– is the predominate species. This 
completes the ladder diagram.

Using the ladder diagram, it is easy to identify the predominate form of 
acetic acid at any pH. At a pH of 3.5, for example, acetic acid exists primar‑
ily as CH3COOH. If we add sufficient base to the solution such that the 
pH increases to 6.5, the predominate form of acetic acid is CH3COO–.

Figure 6.3 Acid–base ladder diagram for acetic acid showing the relative concentrations of CH3COOH 
and CH3COO–. A simpler version of this ladder diagram dispenses with the equalities and shows only 
the predominate species in each region.

more acidic

more basic

pH pH = pKa = 4.76

[CH3COO–] > [CH3COOH]

[CH3COOH] > [CH3COO–]

[CH3COO–] = [CH3COOH]
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Example 6.7

Draw a ladder diagram for the weak base p‑nitrophenolate and identify its 
predominate form at a pH of 6.00.

Solution

To draw a ladder diagram for a weak base, we simply draw the ladder dia‑
gram for its conjugate weak acid. From Appendix 12, the pKa for p‑nitro‑
phenol is 7.15. The resulting ladder diagram is shown in Figure 6.4. At a 
pH of 6.00, p‑nitrophenolate is present primarily in its weak acid form.

Figure 6.4 Acid–base ladder dia‑
gram for p‑nitrophenolate. Practice Exercise 6.5

Draw a ladder diagram for carbonic acid, H2CO3. Because H2CO3 is 
a diprotic weak acid, your ladder diagram will have two steps. What is 
the predominate form of carbonic acid when the pH is 7.00? Relevant 
equilibrium constants are in Appendix 11.

Click here to review your answer to this exercise.

Ladder diagrams are particularly useful for evaluating the reactivity be‑
tween a weak acid and a weak base. Figure 6.5 shows a single ladder diagram 
for acetic acid/acetate and p‑nitrophenol/p‑nitrophenolate. An acid and a 
base can not co‑exist if their respective areas of predominance do not over‑
lap. If we mix together solutions of acetic acid and sodium p‑nitrophenolate, 
the reaction

6.32

occurs because the areas of predominance for acetic acid and p‑nitropheno‑
late do not overlap. The solution’s final composition depends on which spe‑

Figure 6.5 Acid–base ladder diagram showing the areas of predominance for acetic acid/acetate and for p‑nitrophenol/
p‑nitrophenolate. The areas in blue shading show the pH range where the weak bases are the predominate species; 
the weak acid forms are the predominate species in the areas shown in pink shading.

more acidic

more basic

pH pKa = 7.15

O2N OH

O–O2N

pKa = 4.74

CH3COO−

CH3COOH 

pKa = 7.15

O2N OH

O–O2N
pH
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cies is the limiting reagent. The following example shows how we can use 
the ladder diagram in Figure 6.5 to evaluate the result of mixing together 
solutions of acetic acid and p‑nitrophenolate.

Example 6.8

Predict the approximate pH and the final composition of mixing together 
0.090 moles of acetic acid and 0.040 moles of p‑nitrophenolate.

Solution

The ladder diagram in Figure 6.5 indicates that the reaction between acetic 
acid and p‑nitrophenolate is favorable. Because acetic acid is in excess, we 
assume that the reaction of p‑nitrophenolate to p‑nitrophenol is complete. 
At equilibrium essentially no p‑nitrophenolate remains and there are 0.040 
mol of p‑nitrophenol. Converting p‑nitrophenolate to p‑nitrophenol con‑
sumes 0.040 moles of acetic acid; thus

moles CH3COOH = 0.090 – 0.040 = 0.050 mol

moles CH3COO– = 0.040 mol

According to the ladder diagram, the pH is 4.76 when there are equal 
amounts of CH3COOH and CH3COO–. Because we have slightly more 
CH3COOH than CH3COO–, the pH is slightly less than 4.76.

Practice Exercise 6.6
Using Figure 6.5, predict the approximate pH and the composition of a 
solution formed by mixing together 0.090 moles of p‑nitrophenolate and 
0.040 moles of acetic acid. 

Click here to review your answer to this exercise.

If the areas of predominance for an acid and a base overlap, then prac‑
tically no reaction occurs. For example, if we mix together solutions of 
CH3COO– and p‑nitrophenol, there is no significant change in the moles 
of either reagent. Furthermore, the pH of the mixture must be between 
4.76 and 7.15, with the exact pH depending upon the relative amounts of 
CH3COO– and p‑nitrophenol.

We also can use an acid–base ladder diagram to evaluate the effect of 
pH on other equilibria. For example, the solubility of CaF2

CaF Ca F2( ) ( ) ( )s aq aq

2 2+ −+

is affected by pH because F– is a weak base. Using Le Châtelier’s principle, 
converting F– to HF increases the solubility of CaF2. To minimize the 
solubility of CaF2 we need to maintain the solution’s pH so that F– is the 
predominate species. The ladder diagram for HF (Figure 6.6) shows us that 
maintaining a pH of more than 3.17 minimizes solubility losses.

Figure 6.6 Acid–base ladder dia‑
gram for HF. To minimize the sol‑
ubility of CaF2, we need to keep 
the pH above 3.17, with more 
basic pH levels leading to smaller 
solubility losses. See Chapter 8 for 
a more detailed discussion. 

more acidic

more basic

pH pKa = 3.17

HF

F–
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6F.2 Ladder Diagrams for Complexation Equilibria

We can apply the same principles for constructing and interpreting acid–
base ladder diagrams to equilibria involving metal–ligand complexes. For 
a complexation reaction we define the ladder diagram’s scale using the 
concentration of uncomplexed, or free ligand, pL. Using the formation of 
Cd(NH3)2+ as an example

Cd NH Cd(NH2
3 3

2+ ++( ) ( ) ( ))aq aq aq

we can easily show that log K1 is the dividing line between the areas of pre‑
dominance for Cd2+ and Cd(NH3)2+.

K1
3

2

2
3

23 55 10= = ×
+

+

[ ) ]
[ ][ ]

.
Cd(NH
Cd NH

log log
[ ) ]

[ ]
log[ ] .K1

3
2

2 3 2 55= − =
+

+

Cd(NH
Cd

NH

log log
[ ) ]

[ ]
.K1

3
2

2 3 2 55= + =
+

+

Cd(NH
Cd

pNH

pNH
Cd

Cd(NH3 1

2

3
2

2 55= + =
+

+
log log

[ ]
[ ) ]

.K

Thus, Cd2+ is the predominate species when pNH3 is greater than 2.55 (a 
concentration of NH3 smaller than 2.82 × 10–3 M) and for pNH3 values 
less than 2.55, Cd(NH3)2+ is the predominate species. Figure 6.7 shows a 
complete metal–ligand ladder diagram for Cd2+ and NH3.

Example 6.9

Draw a single ladder diagram for the Ca(EDTA)2– and Mg(EDTA)2–  
metal–ligand complexes. Using your ladder diagram, predict the result of 
adding 0.080 moles of Ca2+ to 0.060 moles of Mg(EDTA)2–. EDTA is an 
abbreviation for the ligand ethylenediaminetetraacetic acid.

Solution

Figure 6.8 shows the ladder diagram for this system of metal–ligand com‑
plexes. Because the predominance regions for Ca2+ and Mg(EDTA)2‑ do 
not overlap, the reaction

Ca Mg(EDTA) Ca(EDTA) Mg2 2 2 2+ − − ++ +( ) ( ) ( )aq aq aq (( )aq

takes place. Because Ca2+ is the excess reagent, the composition of the final 
solution is approximately

moles Ca2+ = 0.080 – 0.060 = 0.020 mol

more ligand

less ligand

pNH3

logK1 = 2.55

logK2 = 2.01

logK3 = 1.34

logK4 = 0.84

Cd2+

Cd(NH3)2+

Cd(NH3)3
2+

Cd(NH3)2
2+

Cd(NH3)4
2+

Figure 6.7 Metal–ligand ladder 
diagram for Cd2+–NH3 complex‑
ation reactions. Note that higher‑
order complexes form when pNH3 
is smaller (which corresponds to 
larger concentrations of NH3).
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moles Ca(EDTA)2– = 0.060 mol

moles Mg2+ = 0.060 mol

moles Mg(EDTA)2– = 0 mol

The metal–ligand ladder diagram in Figure 6.7 uses stepwise formation 
constants. We can also construct ladder diagrams using cumulative forma‑
tion constants. The first three stepwise formation constants for the reaction 
of Zn2+ with NH3

Zn NH Zn(NH )3
2

3
2

1
21 6 10+ ++ = ×( ) ( ) ( ) .aq aq aq K

Zn(NH ) NH Zn(NH )3 3 2
2+2

3 2 1 95+ + =( ) ( ) ( ) .aq aq aq K ××102

Zn(NH ) NH Zn(NH )3 2
2+

3 3
2+( ) ( ) ( ) .aq aq aq K+ =3 3 2 3 ××102

show that the formation of Zn(NH3)3
2+ is more favorable than the forma‑

tion of Zn(NH3)2+ or Zn(NH3)2
2+. For this reason, the equilibrium  is best 

represented by the cumulative formation reaction shown here.

Zn NH Zn(NH )3 3
2+2

3 3
63 7 2 10+ + = ×( ) ( ) ( ) .aq aq aq β

To see how we incorporate this cumulative formation constant into a lad‑
der diagram, we begin with the reaction’s equilibrium constant expression.

Figure 6.8 Metal–ligand ladder diagram for Ca(EDTA)2– and for Mg(EDTA)2–. The areas with blue 
shading shows the pEDTA range where the free metal ions are the predominate species; the metal–
ligand complexes are the predominate species in the areas shown with pink shading.

Because K3 is greater than K2, which is 
greater than K1, the formation of the 
metal‑ligand complex Zn(NH3)3

2+ is 
more favorable than the formation of the 
other metal ligand complexes. For this 
reason, at lower values of pNH3 the con‑
centration of Zn(NH3)3

2+ is larger than 
that for Zn(NH3)2

2+ and Zn(NH3)2+. 
The value of b3 is

b3 = K1 × K2 × K3 

pEDTA

logKMg(EDTA)2- = 8.79

logKCa(EDTA)2- = 10.69

Ca2+

Ca(EDTA)2–

Mg2+

Mg(EDTA)2–
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β3 2
3

3
=

+

[ ]
[ ][ ]

Zn(NH )
Zn NH

3 3
2+

Taking the log of each side gives

log log
[ ]

[ ]
log[ ]β3 2 33= −

+

Zn(NH )
Zn

NH3 3
2+

or

pNH
Zn

Zn(NH )3 3
2+3 3

1
3

1
3

= +log log
[ ]

[ ]
β

When the concentrations of Zn2+ and Zn(NH3)3
2+ are equal, then

pNH3 3

1
3

2 29= =log .β

In general, for the metal–ligand complex MLn, the step for a cumulative 
formation constant is 

pL=
1
n nlogβ

Figure 6.9 shows the complete ladder diagram for the Zn2+–NH3 system.

6F.3 Ladder Diagram for Oxidation/Reduction Equilibria

We also can construct ladder diagrams to help evaluate redox equilibria. 
Figure 6.10 shows a typical ladder diagram for two half‑reactions in which 
the scale is the potential, E. The Nernst equation defines the areas of pre‑
dominance. Using the Fe3+/Fe2+ half‑reaction as an example, we write

Figure 6.9 Ladder diagram for 
Zn2+–NH3 metal–ligand compl‑
exation reactions showing both a 
step based on a cumulative forma‑
tion constant, and a step based on 
a stepwise formation constant.

Figure 6.10 Redox ladder diagram for Fe3+/Fe2+ and for Sn4+/
Sn2+. The areas with blue shading show the potential range 
where the oxidized forms are the predominate species; the re‑
duced forms are the predominate species in the areas shown 
with pink shading. Note that a more positive potential favors 
the oxidized form.

more ligand

less ligand

pNH3

logK4 = 2.03

Zn2+

Zn(NH3)3
2+

Zn(NH3)4
2+

logβ3 = 2.291
3

E

Eo
Sn4+/Sn2+ = +0.154 V

Eo
Fe3+/Fe2+ = +0.771V

Fe3+

Fe2+

Sn4+

Sn2+

more negative

more positive
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At potentials more positive than the standard state potential, the predomi‑
nate species is Fe3+, whereas Fe2+ predominates at potentials more negative 
than E o. When coupled with the step for the Sn4+/Sn2+ half‑reaction we 
see that Sn2+ is a useful reducing agent for Fe3+. If Sn2+ is in excess, the 
potential of the resulting solution is near +0.151 V.

Because the steps on a redox ladder diagram are standard state poten‑
tials, complications arise if solutes other than the oxidizing agent and reduc‑
ing agent are present at non‑standard state concentrations. For example, the 
potential for the half‑reaction

UO H O U H O3 22
2 44 2 6+ + − ++ + +( ) ( ) ( ) ( )aq aq aq le 

depends on the solution’s pH. To define areas of predominance in this case 
we begin with the Nernst equation

E =+ −
+

+ +
0 327

0 05916
2

4

2
2 4

.
.

log
[ ]

[ ][ ]
U

UO H O3

and factor out the concentration of H3O+.

E =+ + −+
+

0 327
0 05916

2
0 05916

2
4

4

.
.

log[ ]
.

log
[

H O
U

3

]]
[ ]UO2

2+

From this equation we see that the area of predominance for UO2
2+ and 

U4+ is defined by a step whose potential is

E =+ + =+ −+0 327
0 05916

2
0 327 0 11834.

.
log[ ] . .H O pH3

Figure 6.11 shows how pH affects the step for the UO2
2+/U4+ half‑reac‑

tion.

6G Solving Equilibrium Problems
Ladder diagrams are a useful tool for evaluating chemical reactivity, usually 
providing a reasonable approximation of a chemical system’s composition 
at equilibrium. If we need a more exact quantitative description of the 
equilibrium condition, then a ladder diagram is insufficient. In this case 
we need to find an algebraic solution. In this section we will learn how to 
set‑up and solve equilibrium problems. We will start with a simple problem 
and work toward more complex problems. 

Figure 6.11 Redox ladder diagram 
for the UO2

2+/U4+ half‑reaction 
showing the effect of pH on the 
step.

more negative

more positive

E

Eo = +0.327 V (pH = 0)

UO2
2+

U4+

Eo = +0.209 V (pH = 1)

Eo = +0.090 V (pH = 2)
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6G.1 A Simple Problem—Solubility of Pb(IO3)2

If we place an insoluble compound such as Pb(IO3)2 in deionized water, the 
solid dissolves until the concentrations of Pb2+ and IO3

– satisfy the solu‑
bility product for Pb(IO3)2. At equilibrium the solution is saturated with 
Pb(IO3)2, which simply means that no more solid can dissolve. How do 
we determine the equilibrium concentrations of Pb2+ and IO3

–, and what 
is the molar solubility of Pb(IO3)2 in this saturated solution?

We begin by writing the equilibrium reaction and the solubility product 
expression for Pb(IO3)2.

Pb(IO ) Pb IO3 2( ) ( ) ( )s aq aq

2
32+ −+

K sp Pb IO= = ×+ − −[ ][ ] .2
3

2 132 5 10 6.33

As Pb(IO3)2 dissolves, two IO3
– ions are produced for each ion of Pb2+. If 

we assume that the change in the molar concentration of Pb2+ at equilib‑
rium is x, then the change in the molar concentration of IO3

– is 2x. The 
following table helps us keep track of the initial concentrations, the change 
in concentrations, and the equilibrium concentrations of Pb2+ and IO3

–.

Concentrations Pb(IO3)2(s)  Pb2+ (aq) + 2IO3
– (aq)

Initial solid 0 0
Change solid +x +2x

Equilibrium solid x 2x

Substituting the equilibrium concentrations into equation 6.33 and solv‑
ing gives

( )( ) .
.

x x x

x

2 4 2 5 10
3 97 10

2 3 13

5

= = ×

= ×

−

−

Substituting this value of x back into the equilibrium concentration expres‑
sions for Pb2+ and IO3

– gives their concentrations as

[ ] .
] .

Pb M
[IO M3

2 5

5

4 0 10
2 7 9 10

+ −

− −

= = ×

= = ×

x

x

Because one mole of Pb(IO3)2 contains one mole of Pb2+, the molar solu‑
bility of Pb(IO3)2 is equal to the concentration of Pb2+, or 4.0 × 10–5 M.

When we first add solid Pb(IO3)2 to wa‑
ter, the concentrations of Pb2+ and IO3

–

are zero and the reaction quotient, Q, is

Q = [Pb2+][IO3
–]2 = 0

As the solid dissolves, the concentrations 
of these ions increase, but Q remains 
smaller than Ksp. We reach equilibrium 
and “satisfy the solubility product” when

Q = Ksp

Because a solid, such as Pb(IO3)2, does 
not appear in the solubility product ex‑
pression, we do not need to keep track of 
its concentration. Remember, however, 
that the Ksp value applies only if there is 
some Pb(IO3)2 present at equilibrium.

We can express a compound’s solubility 
in two ways: molar solubility (mol/L) or 
mass solubility (g/L). Be sure to express 
your answer clearly.

Practice Exercise 6.7
Calculate the molar solubility and the mass solubility for Hg2Cl2, given 
the following solubility reaction and Ksp value.

Hg Cl Hg Cl2 sp2 2
2 182 1 2 10( ) ( ) ( ) .s aq aq K

+ − −+ = ×

Click here to review your answer to this exercise.
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6G.2 A More Complex Problem—The Common Ion Effect

Calculating the solubility of Pb(IO3)2 in deionized water is a straightfor‑
ward problem since the solid’s dissolution is the only source of Pb2+ andIO3

–. 
But what if we add Pb(IO3)2 to a solution of 0.10 M Pb(NO3)2, which 
provides a second source of Pb2+?  Before we set‑up and solve this problem 
algebraically, think about the system’s chemistry and decide whether the 
solubility of Pb(IO3)2 will increase, decrease or remain the same.

We begin by setting up a table to help us keep track of the concentrations 
of Pb2+ and IO3

– as this system moves toward and reaches equilibrium.

Concentrations Pb(IO3)2(s)  Pb2+ (aq) + 2IO3
– (aq)

Initial solid 0.10 0
Change solid +x +2x

Equilibrium solid 0.10 + x 2x

Substituting the equilibrium concentrations into equation 6.33

( . )( ) .0 10 2 2 5 102 13+ = × −x x

and multiplying out the terms on the equation’s left side leaves us with

4 0 40 2 5 103 2 13x x+ = × −. . 6.34
This is a more difficult equation to solve than that for the solubility of 
Pb(IO3)2 in deionized water, and its solution is not immediately obvious. 
We can find a rigorous solution to equation 6.34 using available computer 
software packages and spreadsheets, some of which are described in Sec‑
tion 6.J.

How might we solve equation 6.34 if we do not have access to a com‑
puter?  One approach is to use our understanding of chemistry to simplify 
the problem. From Le Châtelier’s principle we know that a large initial 
concentration of Pb2+ significantly decreases the solubility of Pb(IO3)2. 
One reasonable assumption is that the equilibrium concentration of Pb2+ 
is very close to its initial concentration. If this assumption is correct, then 
the following approximation is reasonable

[ ] . .Pb M2 0 10 0 10+ = + ≈x

Substituting our approximation into equation 6.33 and solving for x gives

( . )( ) .
. .

.

0 1 2 2 5 10
0 4 2 5 10

7 91 1

2 13

2 13

x

x

x

= ×

= ×

= ×

−

−

00 7−

Before accepting this answer, we must verify that our approximation is reason‑
able. The difference between the calculated concentration of Pb2+, 0.10 + x 
M, and our assumption that it is 0.10 M is 7.9 × 10–7, or 7.9 × 10–4 % of 

Beginning a problem by thinking about 
the likely answer is a good habit to devel‑
op. Knowing what answers are reasonable 
will help you spot errors in your calcula‑
tions and give you more confidence that 
your solution to a problem is correct.

Because the solution already contains a 
source of Pb2+, we can use Le Châtelier’s 
principle to predict that the solubility of 
Pb(IO3)2 is smaller than that in our previ‑
ous problem.

There are several approaches to solving 
cubic equations, but none are computa‑
tionally easy.

%
( . ) .

.

.

.

error =
+ −

×

=
×

×
−

0 10 0 10

0 10
100

7 91 10

0 10

7

x

1100

7 91 10 4= × −. %
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the assumed concentration. This is a negligible error. Accepting the result 
of our calculation, we find that the equilibrium concentrations of Pb2+ and 
IO3

– are

[ ] . .
] .

Pb M
[IO M3

2

6

0 10 0 10
2 1 6 10

+

− −

= + ≈

= = ×

x

x

The molar solubility of Pb(IO3)2 is equal to the additional concentration of 
Pb2+ in solution, or 7.9 × 10–4 mol/L. As expected, Pb(IO3)2 is less soluble 
in the presence of a solution that already contains one of its ions. This is 
known as the common ion effect.

As outlined in the following example, if an approximation leads to an 
unacceptably large error we can extend the process of making and evaluat‑
ing approximations.

Example 6.10

Calculate the solubility of Pb(IO3)2 in 1.0 × 10–4 M Pb(NO3)2.

Solution

Letting x equal the change in the concentration of Pb2+, the equilibrium 
concentrations of Pb2+ and IO3

– are

[ ] . [ ]Pb IO2 4
31 0 10 2+ − −= × + =x x

Substituting these concentrations into equation 6.33 leaves us with

( . )( ) .1 0 10 2 2 5 104 2 13× + = ×− −x x

To solve this equation for x, we make the following assumption

[ ] . .Pb M2 4 41 0 10 1 0 10+ − −= × + ≈ ×x

obtaining a value for x of 2.50× 10–4. Substituting back, gives the calcu‑
lated concentration of Pb2+ at equilibrium as

[ ] . . .Pb M2 4 5 41 0 10 2 50 10 1 25 10+ − − −= × + × = ×

a value that differs by 25% from our assumption that the equilibrium 
concentration is 1.0× 10–4 M. This error seems unreasonably large. Rather 
than shouting in frustration, we make a new assumption. Our first as‑
sumption—that the concentration of Pb2+ is 1.0× 10–4 M—was too small. 
The calculated concentration of 1.25× 10–4 M, therefore, is probably a bit 
too large. For our second approximation, let’s assume that

[ ] . .Pb2 4 41 0 10 1 25 10+ − −= × + ≈ ×x

Substituting into equation 6.33 and solving for x gives its value as 
2.24× 10–5. The resulting concentration of Pb2+ is
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[ ] . . .Pb M2 4 5 41 0 10 2 24 10 1 22 10+ − − −= × + × = ×

which differs from our assumption of 1.25× 10–4 M by 2.4%. Because the 
original concentration of Pb2+ is given to two significant figure, this is a 
more reasonable error. Our final solution, to two significant figures, is

[ ] . [ ] .Pb M IO M2 4
3

51 2 10 4 5 10+ − − −= × = ×

and the molar solubility of Pb(IO3)2 is 2.2× 10–5 mol/L. This iterative 
approach to solving an equation is known as the method of successive 
approximations.

Practice Exercise 6.8
Calculate the molar solubility for Hg2Cl2 in 0.10 M NaCl and compare 
your answer to its molar solubility in deionized water (see Practice Exer‑
cise 6.7). 

Click here to review your answer to this exercise.

6G.3 A Systematic Approach to Solving Equilibrium Problems

Calculating the solubility of Pb(IO3)2 in a solution of Pb(NO3)2 is more 
complicated than calculating its solubility in deionized water. The calcula‑
tion, however, is still relatively easy to organize, and the simplifying assump‑
tion fairly obvious. This problem is reasonably straightforward because it 
involves only one equilibrium reaction and one equilibrium constant. 

Determining the equilibrium composition of a system with multiple 
equilibrium reactions is more complicated. In this section we introduce a 
systematic approach to setting‑up and solving equilibrium problems. As 
shown in Table 6.1, this approach involves four steps.

Table 6.1 Systematic Approach to Solving Equilibrium Problems
Step 1: Write all relevant equilibrium reactions and equilibrium constant expressions.
Step 2: Count the unique species appearing in the equilibrium constant expressions; 

these are your unknowns. You have enough information to solve the problem 
if the number of unknowns equals the number of equilibrium constant expres‑
sions. If not, add a mass balance equation and/or a charge balance equation. 
Continue adding equations until the number of equations equals the number 
of unknowns. 

Step 3: Combine your equations and solve for one unknown. Whenever possible, sim‑
plify the algebra by making appropriate assumptions. If you make an assump‑
tion, set a limit for its error. This decision influences your evaluation of the 
assumption.

Step 4: Check your assumptions. If any assumption proves invalid, return to the pre‑
vious step and continue solving. The problem is complete when you have an 
answer that does not violate any of your assumptions.
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In addition to equilibrium constant expressions, two other equations 
are important to the systematic approach for solving equilibrium problems. 
The first of these is a mass balance equation, which is simply a statement 
that matter is conserved during a chemical reaction. In a solution of a acetic 
acid, for example, the combined concentrations of the conjugate weak acid, 
CH3COOH, and the conjugate weak base, CH3COO–, must equal acetic 
acid’s initial concentration, CCH3COOH.

CCH COOH 3 33
CH COOH CH COO= + −[ ] [ ]

The second equation is a charge balance equation, which requires 
that total charge from the cations equal the total charge from the anions. 
Mathematically, the charge balance equation is 

( ) [ ] ( ) [ ]z zi
z

i
i

j
z

j
j

+ + − −∑ ∑=C A

where [Cz+]i and  [Az–]j are, respectively, the concentrations of the ith cat‑
ion and the jth anion, and |(z+)i| and |(z–)j| are the absolute values of the 
ith cation’s charge and the jth anion’s charge. Every ion in solution, even 
if it does not appear in an equilibrium reaction, must appear in the charge 
balance equation. For example, the charge balance equation for an aqueous 
solution of Ca(NO3)2 is

2 2
3× + = ++ + − −[ ] [ ] [ ] [ ]Ca H O OH NO3

Note that we multiply the concentration of Ca2+ by two, and that we in‑
clude the concentrations of H3O+ and OH–. 

Example 6.11

Write mass balance equations and a charge balance equation for a 0.10 M 
solution of NaHCO3.

Solution

It is easier to keep track of the species in solution if we write down the 
reactions controlling the solution’s composition. These reactions are the 
dissolution of a soluble salt

NaHCO Na HCO3( ) ( ) ( )s aq aq→ ++ −
3

and the acid–base dissociation reactions of HCO3
– and H2O

HCO H O H O CO2 33 3
2− + −+ +( ) ( ) ( ) ( )aq l aq aq

HCO H O OH H CO2 33 2
− −+ +( ) ( ) ( ) ( )aq l aq aq

2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+

You may recall from Chapter 2 that this is 
the difference between a formal concen‑
tration and a molar concentration. The 
variable C represents a formal concentra‑
tion.

We use absolute values because we are 
balancing the concentration of charge and 
concentrations cannot be negative. 

There are situations where it is impossible 
to write a charge balance equation because 
we do not have enough information about 
the solution’s composition.  For example, 
suppose we fix a solution’s pH using a buf‑
fer. If the buffer’s composition is not speci‑
fied, then a charge balance equation can 
not be written.
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The mass balance equations are 

0 10 3 3 3
2. [ ] [ ] [ ]M H CO HCO CO2= + +− −

0 10. [ ]M Na= +

and the charge balance equation is

[ ] [ ] [ ] [ ] [ ]Na H O OH HCO CO3
+ + − − −+ = + + ×3 3

22

Practice Exercise 6.9
Write appropriate mass balance and charge balance equations for a solu‑
tion containing 0.10 M KH2PO4 and 0.050 M Na2HPO4.

Click here to review your answer to this exercise.

6G.4 pH of a Monoprotic Weak Acid

To illustrate the systematic approach to solving equilibrium problems, let’s 
calculate the pH of 1.0 M HF. Two equilibrium reactions affect the pH. 
The first, and most obvious, is the acid dissociation reaction for HF

HF H O H O2 3 F( ) ( ) ( ) ( )aq l aq aq+ + −+

for which the equilibrium constant expression is

K a
3H O F

HF
= = ×

+ −
−[ ][ ]

[ ]
.6 8 10 4 6.35

The second equilibrium reaction is the dissociation of water, which is an 
obvious yet easily neglected reaction

2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+

K w 3H O OH= = ×+ − −[ ][ ] .1 00 10 14 6.36

Counting unknowns, we find four: [HF], [F–], [H3O+], and [OH–]. To 
solve this problem we need two additional equations. These equations are 
a mass balance equation on hydrofluoric acid

CHF HF F= + −[ ] [ ] 6.37

and a charge balance equation

[ ] [ ] [ ]H O OH F3
+ − −= + 6.38

With four equations and four unknowns, we are ready to solve the 
problem. Before doing so, let’s simplify the algebra by making two 
assumptions. 

Step 1: Write all relevant equilibrium re‑
actions and equilibrium constant expres‑
sions.

Step 2: Count the unique species appear‑
ing in the equilibrium constant expres‑
sions; these are your unknowns. You have 
enough information to solve the problem 
if the number of unknowns equals the 
number of equilibrium constant expres‑
sions. If not, add a mass balance equation 
and/or a charge balance equation. Con‑
tinue adding equations until the number 
of equations equals the number of un‑
knowns. 
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Assumption One. Because HF is a weak acid, the solution must be acidic. 
For an acidic solution it is reasonable to assume that

[H3O+] >> [OH–]

which simplifies the charge balance equation to

[ ] [ ]H O F3
+ −= 6.39

Assumption Two. Because HF is a weak acid, very little dissociation oc‑
curs. Most of the HF remains in its conjugate weak acid form and it is 
reasonable to assume that

[HF] >> [F–]

which simplifies the mass balance equation to

CHF HF= [ ] 6.40

For this exercise let’s accept an assumption if it introduces an error of less 
than ±5%.

Substituting equation 6.39 and equation 6.40 into equation 6.35, and 
solving for the concentration of H3O+ gives us

K
C Ca

3 3

HF

3

HF

H O H O H O
= = = ×

+ + +
−[ ][ ] [ ]

.
2

46 8 10

[ ] ( . )( . ) .H O3 a HF
+ − −= = × = ×K C 6 8 10 1 0 2 6 104 2

Before accepting this answer, we must verify our assumptions. The first as‑
sumption is that [OH–] is significantly smaller than [H3O+]. Using equa‑
tion 6.36, we find that

[ ]
[ ]

.
.

.OH
H O

w

3

−
+

−

−
−= =

×
×

= ×
K 1 00 10

2 6 10
3 8 10

14

2
13

Clearly this assumption is acceptable. The second assumption is that [F–] is 
significantly smaller than [HF]. From equation 6.39 we have

[F–] = 2.6 × 10–2 M

Because [F–] is 2.60% of CHF, this assumption is also acceptable. Given that 
[H3O+] is 2.6 × 10–2 M, the pH of 1.0 M HF is 1.59.

How does the calculation change if we limit an assumption’s error to 
less than ±1%? In this case we can no longer assume that [HF] >> [F–] and 
we cannot simplify the mass balance equation. Solving the mass balance 
equation for [HF]

[ ] [ ] [ ]HF F H OHF HF 3= − = −− +C C

and substituting into the Ka expression along with equation 6.39 gives

Step 3: Combine your equations and 
solve for one unknown. Whenever pos‑
sible, simplify the algebra by making ap‑
propriate assumptions. If you make an 
assumption, set a limit for its error. This 
decision influences your evaluation the 
assumption.

Step 4: Check your assumptions. If any 
assumption proves invalid, return to the 
previous step and continue solving. The 
problem is complete when you have an 
answer that does not violate any of your 
assumptions.



243Chapter 6 Equilibrium Chemistry

K
Ca

3

HF 3

H O
H O

=
−

+

+

[ ]
[ ]

2

Rearranging this equation leaves us with a quadratic equation

[ ] [ ]H O H O3 a 3 a HF
+ ++ − =2 0K K C

which we solve using the quadratic formula

x
b b ac

a
=
− ± −2 4

2

where a, b, and c are the coefficients in the quadratic equation 

ax2 + bx + c = 0

Solving a quadratic equation gives two roots, only one of which has chemi‑
cal significance. For our problem, the equation’s roots are

x

x

=
− × ± × − ×− − −6 8 10 6 8 10 4 1 6 8 10

2 1

4 4 2 4. ( . ) ( )( )( . )
( )( )

==
− × ± ×

= × − ×

− −

−

6 8 10 5 22 10
2

2 57 10 2 63 10

4 2

2

. .

. .x or −−2

Only the positive root is chemically significant because the negative root 
gives a negative concentration for H3O+. Thus, [H3O+] is 2.6 × 10–2 M 
and the pH is 1.59.

You can extend this approach to calculating the pH of a monoprotic 
weak base by replacing Ka with Kb, replacing CHF with the weak base’s 
concentration, and solving for [OH–] in place of [H3O+].

Practice Exercise 6.10
Calculate the pH of 0.050 M NH3. State any assumptions you make in 
solving the problem, limiting the error for any assumption to ±5%. The 
Kb value for NH3 is 1.75 × 10–5.

Click here to review your answer to this exercise.

6G.5 pH of a Polyprotic Acid or Base

A more challenging problem is to find the pH of a solution containing a 
polyprotic weak acid or one of its conjugate species. As an example, con‑
sider the amino acid alanine, whose structure is shown in Figure 6.12. The  
ladder diagram in Figure 6.13 shows alanine’s three acid–base forms and 
their respective areas of predominance. For simplicity, we identify these 
species as H2L+, HL, and L–. 

Figure 6.12 Structure of the ami‑
no acid alanine, which has pKa 
values of 2.348 and 9.867.

H2N CH C

CH3

OH

O
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ph of 0.10 m alanine hydrochloride (h2l+)

Alanine hydrochloride is a salt of the diprotic weak acid H2L+ and Cl–. 
Because H2L+ has two acid dissociation reactions, a complete systematic 
solution to this problem is more complicated than that for a monoprotic 
weak acid. The ladder diagram in Figure 6.13 helps us simplify the problem. 
Because the areas of predominance for H2L+ and L– are so far apart, we can 
assume that a solution of H2L+ is not likely to contain significant amounts 
of L–. As a result, we can treat H2L+ as though it is a monoprotic weak acid. 
Calculating the pH of 0.10 M alanine hydrochloride, which is 1.72, is left 
to the reader as an exercise.

ph of 0.10 m Sodium alaninate (l–)

The alaninate ion is a diprotic weak base. Because L– has two base disso‑
ciation reactions, a complete systematic solution to this problem is more 
complicated than that for a monoprotic weak base. Once again, the ladder 
diagram in Figure 6.13 helps us simplify the problem. Because the areas 
of predominance for H2L+ and L– are so far apart, we can assume that a 
solution of L– is not likely to contain significant amounts of H2L+. As a 
result, we can treat L– as though it is a monoprotic weak base. Calculating 
the pH of 0.10 M sodium alaninate, which is 11.42, is left to the reader as 
an exercise.

ph of 0.1 m alanine (hl)

Finding the pH of a solution of alanine is more complicated than our pre‑
vious two examples because we cannot ignore the presence of both H2L+ 
and L–. To calculate the solution’s pH we must consider alanine’s acid dis‑
sociation reaction

HL H O H O2 3 L( ) ( ) ( ) ( )aq l aq aq+ ++ −


and its base dissociation reaction

HL H O OH2 H L( ) ( ) ( ) ( )aq l aq aq+ +− +
 2

As always, we must also consider the dissociation of water

2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+

This leaves us with five unknowns—[H2L+], [HL], [L–], [H3O+], and 
[OH–]—for which we need five equations. These equations are Ka2 and 
Kb2 for alanine

K a2
3H O L

HL
=

+ −[ ][ ]
[ ]

Figure 6.13 Ladder diagram for alanine.

H3N CH C

CH3

OH

O

+

H2N CH C

CH3

O

O

–

+H3N CH C

CH3

O

O

–pH

pKa1 = 9.867

pKa2 = 2.348

H2L+

HL

L–
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K
K
Kb2

w

a1

2OH H L
HL

= =
− +[ ][ ]
[ ]

the Kw equation

K w 3H O OH= + −[ ][ ]

a mass balance equation for alanine

CHL H L HL L= + ++ −[ ] [ ] [ ]2

and a charge balance equation

[ ] [ ] [ ] [ ]H L H O OH L2 3
+ + − −+ = +

Because HL is a weak acid and a weak base, it seems reasonable to assume 
that 

[HL] >> [H2L+] + [L–]

which allows us to simplify the mass balance equation to

CHL HL= [ ]

Next we solve Kb2 for [H2L+]

[ ]
[ ]

[ ]
[ ][ ] [

H L
HL

OH
H O HL H O

2
w

a1

3

a1

HL 3+
−

+

= = =
K

K K
C ++ ]

K a1

and Ka2 for [L–]

[ ]
[ ]

[ ] [ ]
L

HL
H O H O

a2

3

a2 HL

3

−
+ +

= =
K K C

Substituting these equations for [H2L+] and [L–], along with the equation 
for Kw, into the charge balance equation give us

C
K

K K CHL 3

a1
3

w

3

a2 HL

3

H O
H O

[H O H O
[ ]

[ ]
] [ ]

+
+

+ +
+ = +

which we simplify to

[ ]
[ ]

H O
H O3

HL

a1 3
w a2 H

+
+

+ = +
C
K

K K C1
1

LL( )

[ ]H O3
a2 HL w

HL

a1

a+ =
+( )

+

=2

1

K C K

C
K

K 11 a2 HL w

HL a1

K C K

C K

+( )
+( )
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[ ]H O3
a1 a2 HL a1 w

HL a1

+ =
+
+

K K C K K
C K

We can further simplify this equation if Ka1Kw << Ka1Ka2CHL, and if 
Ka1 << CHL, leaving us with

[ ]H O3 a1 a2
+ = K K

For a solution of 0.10 M alanine the [H3O+] is

[ ] ( . )( . ) .H O3
+ − − −= × × = ×4 487 10 1 358 10 7 807 103 10 7 M

or a pH of 6.11. 
Practice Exercise 6.11
Verify that each assumption in our solution for the pH of 0.10 M alanine 
is reasonable, using ±5% as the limit for the acceptable error. 

Click here to review your answer to this exercise.

6G.6 Effect of Complexation on Solubility

One method for increasing a precipitate’s solubility is to add a ligand that 
forms soluble complexes with one of the precipitate’s ions. For example, the 
solubility of AgI increases in the presence of NH3 due to the formation of 
the soluble Ag(NH3)2

+ complex. As a final illustration of the systematic ap‑
proach to solving equilibrium problems, let’s calculate the molar solubility 
of AgI in 0.10 M NH3.

We begin by writing the relevant equilibrium reactions, which includes 
the solubility of AgI, the acid–base chemistry of NH3 and H2O, and the 
metal‑ligand complexation chemistry between Ag+ and NH3.

AgI Ag I( ) ( ) ( )s aq aq

+ −+

NH H O OH2 NH3 4( ) ( ) ( ) ( )aq l aq aq+ +− +


2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+

Ag NH Ag(NH+ ++( ) ( ) ( ))aq aq aq2 3 3 2

This leaves us with seven unknowns—[Ag+], [I–], [NH3], [NH4
+], [OH–], 

[H3O+], and [Ag(NH3)2+]—and a need for seven equations. Four of the 
equations we need to solve this problem are the equilibrium constant ex‑
pressions

K sp Ag I= = ×+ − −[ ][ ] .8 3 10 17 6.41
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K b

NH OH
NH

= = ×
+ −

−[ ][ ]
[ ]

.4

3

51 75 10 6.42

K w 3H O OH= = ×+ − −[ ][ ] .1 00 10 14 6.43

β2
2

3
2

71 7 10= = ×
+

+

[ ) ]
[ ][ ]

.
Ag(NH

Ag NH
3 6.44

We still need three additional equations. The first of these equation is a mass 
balance for NH3.

C ANH3
NH NH g(NH= + + ×+ +[ ] [ ] [ ) ]3 4 3 22 6.45

In writing this mass balance equation we multiply the concentration of 
Ag(NH3)2

+ by two since there are two moles of NH3 per mole of Ag(NH3)2
+. 

The second additional equation is a mass balance between iodide and silver. 
Because AgI is the only source of I‑ and Ag+, each iodide in solution must 
have an associated silver ion, which may be Ag+ or Ag(NH3)2

+; thus

[ ] [ ] [ ) ]I Ag Ag(NH− + += + 3 2 6.46

Finally, we include a charge balance equation.

[ ] [ ) ] [ ] [ ] [ ] [ ]Ag Ag(NH NH H O OH I3
+ + + + − −+ + + = +3 2 4 6.47

Although the problem looks challenging, three assumptions greatly 
simplify the algebra. 

Assumption One. Because the formation of the Ag(NH3)2
+ complex is so 

favorable (b2 is 1.7 × 107), there is very little free Ag+ and it is reasonable 
to assume that

[Ag+] << [Ag(NH3)2
+]

Assumptions Two. Because NH3 is a weak base we may reasonably as‑
sume that most uncomplexed ammonia remains as NH3; thus

[NH4
+] << [NH3]

Assumption Three. Because Ksp for AgI is significantly smaller than b2 for 
Ag(NH3)2

+, the solubility of AgI is probably small enough that very little 
ammonia is needed for metal–ligand complexation; thus 

[Ag(NH3)2
+] << [NH3]

As we use these assumptions to simplify the algebra, let’s set ±5% as the 
limit for error.

Assumption two and assumption three suggest that the concentration of 
NH3 is much larger than the concentrations of either NH4

+ or Ag(NH3)2
+, 

allowing us to simplify the mass balance equation for NH3 to
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CNH3
NH= [ ]3 6.48

Finally, using assumption one, which suggests that the concentration of 
Ag(NH3)2

+ is much larger than the concentration of Ag+, we simplify the 
mass balance equation for I– to

[ ] [ ) ]I Ag(NH− += 3 2 6.49

Now we are ready to combine equations and solve the problem. We 
begin by solving equation 6.41 for [Ag+] and substitute it into b2 (equation 
6.44), leaving us with

β2
3 2

3
2

=
+ −[ ) ][ ]

[ ]
Ag(NH I

NHspK
6.50

Next we substitute equation 6.48 and equation 6.49 into equation 6.50, 
obtaining 

β2

2

2
=

( )
−[ ]I

sp NH3
K C

6.51

Solving equation 6.51 for [I–] gives

[ ] ( . ) ( . )( . )I NH sp3

− −= = × × =C Kβ2
7 170 10 1 7 10 8 3 10 3..76 10 6× − M

Because one mole of AgI produces one mole of I–, the molar solubility of 
AgI is the same as the [I–], or 3.8 × 10–6 mol/L. 

Before accepting this answer we need to check our assumptions. Substi‑
tuting [I–] into equation 6.41, we find that the concentration of Ag+ is

[ ]
[ ]

.
.

.Ag
I

sp+
−

−

−
−= =

×
×

= ×
K 8 3 10

3 76 10
2 2 10

17

6
11 MM

Substituting the concentrations of I– and Ag+ into the mass balance equa‑
tion for iodide (equation 6.46), gives the concentration of Ag(NH3)2

+ as

[Ag(NH3)2
+] = [I–] – [Ag+] = 3.76 × 10–6 –  2.2 × 10–11 =3 .8 × 10–6 M 

Our first assumption that [Ag+] is significantly smaller than the [Ag(NH3)2
+]

is reasonable. 
Substituting the concentrations of Ag+ and Ag(NH3)2

+ into equation 
6.44 and solving for [NH3], gives

[ ]
[ ) ]

[ ]
.

( .
NH

Ag(NH
Ag

3
3

2

2

6

11

3 8 10
2 2 10

= =
×

×

+

+

−

−β ))( . )
.

1 7 10
0 10

7×
= M

From the mass balance equation for NH3 (equation 6.44) we see that 
[NH4

+] is negligible, verifying our second assumption that [NH4
+] is sig‑

Did you notice that our solution to this 
problem did not make use of equation 
6.47, the charge balance equation? The 
reason for this is that we did not try to 
solve for the concentration of all seven 
species. If we need to know the complete 
equilibrium composition of the reaction 
mixture, then we would need to incorpo‑
rate the charge balance equation into our 
solution.
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nificantly smaller than [NH3]. Our third assumption that [Ag(NH3)2
+] is 

significantly smaller than [NH3] also is reasonable. 

6H Buffer Solutions
Adding as little as 0.1 mL of concentrated HCl to a liter of H2O shifts the 
pH from 7.0 to 3.0. Adding the same amount of HCl to a liter of a solution 
that is 0.1 M in acetic acid and 0.1 M in sodium acetate, however, results 
in a negligible change in pH. Why do these two solutions respond so dif‑
ferently to the addition of HCl? 

A mixture of acetic acid and sodium acetate is one example of an acid–
base buffer. To understand how this buffer works to limit the change in 
pH, we need to consider its acid dissociation reaction

CH COOH H O H O CH COO3 2 3 3( ) ( ) ( ) ( )aq l aq aq+ ++ −


and its corresponding acid dissociation constant

K a
3 3

3

CH COO H O
CH COOH

= = ×
− +

−[ ][ ]
[ ]

.1 75 10 5 6.52

Taking the negative log of the terms in equation 6.52 and solving for pH 
leaves us with the result shown here.

pH p
CH COO
CH COOH

CH CO
a

3

3

3= + = +
−

K log
[ ]
[ ]

. log
[

4 76
OO

CH COOH3

−]
[ ]

6.53

Buffering occurs because of the logarithmic relationship between pH and 
the ratio of the concentrations of acetate and acetic acid. Here is an example 
to illustrate this point. If the concentrations of acetic acid and acetate are 
equal, the buffer’s pH is 4.76. If we convert 10% of the acetate to acetic acid, 
by adding a strong acid, the ratio [CH3COO–]/[CH3COOH] changes 
from 1.00 to 0.818, and the pH decreases from 4.76 to 4.67—a decrease 
of only 0.09 pH units.

6H.1 Systematic Solution to Buffer Problems

Equation 6.53 is written in terms of the equilibrium concentrations of 
CH3COOH and CH3COO– . A more useful relationship relates a buffer’s 
pH to the initial concentrations of the weak acid and the weak base. We 
can derive a general buffer equation by considering the following reactions 
for a weak acid, HA, and the salt of its conjugate weak base, NaA.

NaA Na A
HA H O H O2 3

( ) ( ) ( )

( ) ( ) (

aq aq aq

aq l aq

→ ++ −

++  )) ( )

( ) ( ) ( )

+

+

−

+ −

A

H O H O OH2 3

aq

l aq aq2 
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Because the concentrations of Na+, A–, HA, H3O+, and OH– are unknown, 
we need five equations to uniquely define the solution’s composition. Two 
of these equations are the equilibrium constant expressions for HA and 
H2O.

K a
3H O A

HA
=

+ −[ ][ ]
[ ]

6.54

K w 3H O OH= + −[ ][ ]

The remaining three equations are mass balance equations for HA and for 
Na+

C CHA NaA HA A+ = + −[ ] [ ] 6.55

CNaA Na= +[ ] 6.56

and a charge balance equation

[ ] [ ] [ ] [ ]H O Na OH A3
+ + − −+ = + 6.57

Substituting equation 6.56 into equation 6.57 and solving for [A–] gives

[ ] [ ] [ ]A OH H ONaA 3
− − += − +C 6.58

Next, we substitute equation 6.58 into equation 6.55, which gives the con‑
centration of HA as

[ ] [ ] [ ]HA OH H OHA 3= + −− +C 6.59

Finally, substituting equations 6.58 and 6.59 into equation 6.54 and solv‑
ing for pH gives a general equation for a buffer’s pH.

pH p
OH H O
OH H Oa

NaA 3

HA 3

= +
− +

+ −

− +

− +
K

C
C

log
[ ] [ ]
[ ] [ ]

If the initial concentrations of the weak acid, CHA, and the weak base, CNaA 
are greater than [H3O+] and [OH–], then we can simplify the general equa‑
tion to the henderson–hasselbalch equation.

pH p a
NaA

HA

= +K
C
C

log 6.60

As outlined below, the Henderson–Hasselbalch equation provides a simple 
way to calculate the pH of a buffer, and to determine the change in pH 
upon adding a strong acid or strong base.

Lawrence Henderson (1878‑1942) 
first developed a relationship between 
[H3O+], [HA], and [A–] while studying 
the buffering of blood. Kurt Hasselbalch 
(1874‑1962) modified Henderson’s equa‑
tion by transforming it to the logarithmic 
form shown in equation 6.60.

The assumptions leading to equation 6.60 
produce a minimal error in pH (<±5%) 
for larger concentrations of HA and A–, 
for concentrations of HA and A– that are 
similar in magnitude, and for weak acid’s 
with pKa values closer to 7. For most 
problems in this textbook, equation 6.60 
provides acceptable results. Be sure, how‑
ever, to test your assumptions.

For a discussion of the Henderson–Hassel‑
balch equation, including the error inher‑
ent in equation 6.60, see Po, H. N.; Seno‑
zan, N. M. “The Henderson–Hasselbalch 
Equation: Its History and Limitations,” J. 
Chem. Educ. 2001, 78, 1499–1503.
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Example 6.12

Calculate the pH of a buffer that is 0.020 M in NH3 and 0.030 M in 
NH4Cl. What is the pH after adding 1.0 mL of 0.10 M NaOH to 0.10 
L of this buffer?

Solution

The acid dissociation constant for NH4
+ is 5.70 × 10–10, or a pKa of 9.24. 

Substituting the initial concentrations of NH3 and NH4Cl into equation 
6.60 and solving, we find that the buffer’s pH is

pH= + =9 24
0 020
0 030

9 06. log
.
.

.

Adding NaOH converts a portion of the NH4
+ to NH3 as a result of the 

following reaction

NH OH H O NH24 3
+ −+ +

Because this reaction’s equilibrium constant is so large (it is 5.7 × 104), we 
may treat the reaction as if it goes to completion. The new concentrations 
of NH4

+ and NH3 are

 

C
VNH
4

total

mol NH mol OH

M)(0.10

4

0 030

+ =
−

=

+ −

( . L) M)(1.0 L)
0.10 L 1.0 L

− ×
+ ×

=
−

−

( .0 10 10
10

3

3
00 029. M

C
VNH

total
3

mol NH mol OH

M)(0.10 L

=
+

=

−
3

0 020( . )) M)(1.0 L)
0.10 L 1.0 L

+ ×
+ ×

=
−

−

( .
.

0 10 10
10

0
3

3
0021 M

Substituting these concentrations into the equation 6.60 gives a pH of

pH= + =9 24
0 021
0 029

9 10. log
.
.

.

With a pH of 9.06, the concentration of 
H3O+ is 8.71×10–10 and the concentra‑
tion of OH– is 1.15×10–5. Because both 
of these concentrations are much smaller 
than either CNH3 or CNH4Cl, the ap‑
proximations leading to equation 6.60 are 
reasonable.

Practice Exercise 6.12
Calculate the pH of a buffer that is 0.10 M in KH2PO4 and 0.050 M in 
Na2HPO4. What is the pH after adding 5.0 mL of 0.20 M HCl to 0.10 
L of this buffer. Use Appendix 11 to find the appropriate Ka value. 

Click here to review your answer to this exercise

Note that adding NaOH increases the pH 
from 9.06 to 9.10. As we expect, adding  a 
base makes the pH more basic. Checking 
to see that the pH changes in the right 
direction is one way to catch a calculation 
error.
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We can use a multiprotic weak acid to prepare buffers at as many differ‑
ent pH’s as there are acidic protons, with the Henderson–Hasselbalch equa‑
tion applying in each case. For example, using malonic acid (pKa1 = 2.85 
and pKa1 = 5.70) we can prepare buffers with pH values of

pH

pH

HM

H M

M

HM

2

= +

= +

−

−

−

2 85

5 70 2

. log

. log

C

C

C

C

where H2M, HM– and M2– are malonic acid’s different acid–base forms.
Although our treatment of buffers relies on acid–base chemistry, we 

can extend the use of buffers to equilibria involving complexation or redox 
reactions. For example, the Nernst equation for a solution containing Fe2+ 
and Fe3+ is similar in form to the Henderson‑Hasselbalch equation.  

E E= −+

+

+Fe Fe
o

3+

Fe
Fe/

. log
[ ]
[ ]

2 0 05916
2

3

A solution containing similar concentrations of Fe2+ and Fe3+ is buffered 
to a potential near the standard state reduction potential for Fe3+. We call 
such solutions redox buffers. Adding a strong oxidizing agent or a strong 
reducing agent to a redox buffer results in a small change in potential.

6H.2 Representing Buffer Solutions with Ladder Diagrams

A ladder diagram provides a simple graphical description of a solution’s 
predominate species as a function of solution conditions. It also provides 
a convenient way to show the range of solution conditions over which a 
buffer is effective. For example, an acid–base buffer exists when the con‑
centrations of the weak acid and its conjugate weak base are similar. For 
convenience, let’s assume that an acid–base buffer exists when 

1
10

10
1

≤ ≤
−[ ]

[ ]
CH COO
CH COOH

3

3

Substituting these ratios into the Henderson–Hasselbalch equation 

pH p p

pH p p

a a

a a

= + = −

= + = +

K K

K K

log

log

1
10

1

10
1

1

shows that an acid–base buffer works over a pH range of pKa ± 1. 
Using the same approach, it is easy to show that a metal‑ligand compl‑

exation buffer for MLn exists when
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pL or pL= ± = ±log logK
n nn n1
1 1

β

where Kn or bn is the relevant stepwise or overall formation constant. For 
an oxidizing agent and its conjugate reducing agent, a redox buffer exists 
when

E E
n

RT
F

E
n

= ± × = ±o o o(at 25 C)
1 0 05916.

Ladder diagrams showing buffer regions for several equilibria are shown in 
Figure 6.14. 

6H.3 Preparing Buffers

Buffer capacity is the ability of a buffer to resist a change in pH when 
adding a strong acid or a strong base. A buffer’s capacity to resist a change in 
pH is a function of the concentrations of the weak acid and the weak base, 
as well as their relative proportions. The importance of the weak acid’s con‑
centration and the weak base’s concentration is obvious. The more moles of 
weak acid and weak base a buffer has, the more strong base or strong acid 
it can neutralize without significantly changing its pH.

 The relative proportions of a weak acid and a weak base also affects how 
much the pH changes when adding a strong acid or a strong base. Buffers 
that are equimolar in weak acid and weak base require a greater amount of 
strong acid or strong base to bring about a one unit change in pH. Con‑
sequently, a buffer is most effective against the addition of strong acids or 
strong bases when its pH is near the weak acid’s pKa value.

Figure 6.14 Ladder diagrams showing buffer regions for (a) an acid–base buffer for 
HF and F–; (b) a metal–ligand complexation buffer for Ca2+ and Ca(EDTA)2–; 
and (c) an oxidation–reduction (redox) buffer for Sn4+ and Sn2+.

Although higher concentrations of buffer‑
ing agents provide greater buffer capacity, 
there are reasons for using smaller concen‑
trations, including the formation of un‑
wanted precipitates and the tolerance of 
cells for high concentrations of dissolved 
salts.

A good “rule of thumb” when choosing a 
buffer is to select one whose reagents have 
a pKa value close to your desired pH. 

pL = –log[L]

pH

pKa = 3.17

HF

F–

4.17

2.17

pL

logK1 = 10.69

Ca(EDTA)2-

Ca2+

11.69

9.69

E

Eo = 0.154

Sn2+

Sn4+

0.184

0.124

(a) (b) (c)
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Buffer solutions are often prepared using standard “recipes” found in 
the chemical literature.3 In addition, there are computer programs and on‑
line calculators to aid in preparing buffers.4 Perhaps the simplest way to 
make a buffer, however, is to prepare a solution containing an appropriate 
conjugate weak acid and weak base and measure its pH. You can then adjust 
the pH to the desired value by adding small portions of either a strong acid 
or a strong base.

6I Activity Effects
Careful measurements on the metal–ligand complex Fe(SCN)2+ suggest 
that its stability decreases in the presence of inert ions.5 We can demonstrate 
this by adding an inert salt to an equilibrium mixture of Fe3+ and SCN–. 
Figure 6.15a shows the result of mixing together equal volumes of 1.0 
mM FeCl3 and 1.5 mM KSCN, both of which are colorless. The solution’s 
reddish–orange color is due to the formation of Fe(SCN)2+.

Fe SCN Fe(SCN)3 2+ − ++( ) ( ) ( )aq aq aq 6.61

Adding 10 g of KNO3 to the solution and stirring to dissolve the solid, pro‑
duces the result shown in Figure 6.15b. The solution’s lighter color suggests 
that adding KNO3 shifts reaction 6.61 to the left, decreasing the concen‑
tration of Fe(SCN)2+ and increasing the concentrations of Fe3+ and SCN–. 
The result is a decrease in the complex’s formation constant, K1.

K1

2

3
=

+

+ −

[ ]
[ ][ ]

Fe(SCN)
Fe SCN

6.62

3 See, for example, (a) Bower, V. E.; Bates, R. G. J. Res. Natl. Bur. Stand. (U. S.) 1955, 55, 197–
200; (b) Bates, R. G. Ann. N. Y. Acad. Sci. 1961, 92, 341–356; (c) Bates, R. G. Determination 
of pH, 2nd ed.; Wiley‑Interscience: New York, 1973.

4 (a) Lambert, W. J. J. Chem. Educ. 1990, 67, 150–153; (b) http://www.bioinformatics.org/
JaMBW/5/4/index.html.

5 Lister, M. W.; Rivington, D. E. Can. J. Chem. 1995, 33, 1572–1590.

The 1mM FeCl3 also contains a few drops 
of concentrated HNO3 to prevent the 
precipitation of Fe(OH)3.

Figure 6.15 The effect of a inert salt on a reac‑
tion’s equilibrium position is shown by the so‑
lutions in these two beakers. The beaker on the 
left contains equal volumes of 1.0 mM FeCl3 
and 1.5 mM KSCN. The solution’s color is due 
to the formation of the metal–ligand complex 
Fe(SCN)2+. Adding 10 g of KNO3 to the bea‑
ker on the left produces the result shown on 
the right. The lighter color suggests that there 
is less Fe(SCN)2+ as a result of the equilibrium 
in reaction 6.61 shifting to the left. (a) (b)

http://www.bioinformatics.org/JaMBW/5/4/index.html
http://www.bioinformatics.org/JaMBW/5/4/index.html
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Why should adding an inert electrolyte affect a reaction’s equilib‑
rium position? We can explain the effect of KNO3 on the formation of 
Fe(SCN)2+ by considering the reaction on a microscopic scale. The solution 
in Figure 6.15b contains a variety of cations and anions—Fe3+, SCN–, K+, 
NO3

–, H3O+, and OH–. Although the solution is homogeneous, on aver‑
age, there are slightly more anions in regions near Fe3+ ions, and slightly 
more cations in regions near SCN– ions. As shown in Figure 6.16, each 
Fe3+ ion and SCN– ion is surrounded by an ionic atmosphere of opposite 
charge (d– and d+) that partially screen the ions from each other. Because 
each ion’s apparent charge at the edge of its ionic atmosphere is less than 
its actual charge, the force of attraction between the two ions is smaller. As 
a result, the formation of the Fe(SCN)2+ is slightly less favorable and the 
formation constant in equation 6.62 is slightly smaller. Higher concentra‑
tions of KNO3 increase d– and d+, resulting in even smaller values for the 
formation constant.

ionic Strength

To factor the concentration of ions into the formation constant for 
Fe(SCN)2+, we need a way to express that concentration in a meaningful 
way. Because both an ion’s concentration and its charge are important, we 
define the solution’s ionic strength, µ as

µ = ∑1
2

2c zi i
i

where ci and zi are the concentration and charge of the ith ion. 

Fe3+ SCN–

ionic atmosphere

δ+δ–

charge

distance
0

–1

0

+3

distance

charge

Figure 6.16 Ions of Fe3+ and SCN– are 
surrounded by ionic atmospheres with 
net charges of d– and d+. Because of these 
ionic atmospheres, each ion’s apparent 
charge at the edge of its ionic atmosphere 
is less than the ion’s actual charge. 
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Example 6.13

Calculate the ionic strength for a solution of 0.10 M NaCl. Repeat the 
calculation for a solution of 0.10 M Na2SO4.

Solution

The ionic strength for 0.10 M NaCl is

= × + + × −{ }

= × +

+ −1
2

1 1

1
2

0 10 1

2 2[ ] ( ) [ ] ( )

( . ) ( )

Na Cl

22 20 10 1

0 10

+ × −{ }
=

( . ) ( )

. M

For 0.10 M Na2SO4 the ionic strength is

= × + + × −{ }

= × +

+ −1
2

1 2

1
2

0 10

2
4
2 2[ ] ( ) [ ] ( )

( . ) (

Na SO

11 0 20 2

0 30

2 2) ( . ) ( )

.

+ × −{ }
= M

Note that the unit for ionic strength is molarity, but that a salt’s ionic 
strength need not match its molar concentration. For a 1:1 salt, such as 
NaCl, ionic strength and molar concentration are identical. The ionic 
strength of a 2:1 electrolyte, such as Na2SO4, is three times larger than the 
electrolyte’s molar concentration.

actiVity and actiVity coefficientS

Figure 6.15 shows that adding KNO3 to a mixture of Fe3+ and SCN–de‑
creases the formation constant for Fe(SCN)2+. This creates a contradiction. 
Earlier in this chapter we showed that there is a relationship between a reac‑
tion’s standard‑state free energy, ∆Go, and its equilibrium constant, K.

∆ oG RT K=− ln

Because a reaction has only one standard‑state, its equilibrium constant 
must be independent of solution conditions. Although ionic strength af‑
fects the apparent formation constant for Fe(SCN)2+, reaction 6.61 must 
have an underlying thermodynamic formation constant that is independent 
of ionic strength. 

The apparent formation constant for Fe(SCN)2+, as shown in equation 
6.62, is a function of concentrations. In place of concentrations, we define 
the true thermodynamic equilibrium constant using activities. The activ‑
ity of species A, aA, is the product of its concentration, [A], and a solution‑
dependent activity coefficient, γA.

In calculating the ionic strengths of these 
solutions we are ignoring the presence 
of H3O+ and OH–, and, in the case of 
Na2SO4, the presence of HSO4

– from 
the base dissociation reaction of SO4

2–.

In the case of 0.10 M NaCl, the concentra‑
tions of H3O+ and OH– are 1.0 × 10–7, 
which is significantly smaller than the 
concentrations of Na+ and Cl–.

Because SO4
2– is a very weak base 

(Kb = 1.0 × 10–12), the solution is only 
slightly basic (pH = 7.5), and the concen‑
trations of H3O+, OH–, and HSO4

– are 
negligible.

Although we can ignore the presence of 
H3O+, OH–, and HSO4

– when calculat‑
ing the ionic strength of these two solu‑
tions, be aware that an equilibrium reac‑
tion may well generate ions that affect the 
solution’s ionic strength.
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aA AA= [ ]γ

The true thermodynamic formation constant for Fe(SCN)2+, therefore, is

K
a

a a1

2
2

3

= =
+

+ −

+

Fe(SCN)

Fe SCN

Fe(SCN)
Fe(SCN)[ ]γ 22

3
3

+

+ −
+ −[ ] [ ]Fe SCN

Fe SCN
γ γ

The activity coefficient for a species corrects for any deviation be‑
tween its physical concentration and its ideal value. For a gas, a pure solid, 
a pure liquid, or a non‑ionic solute, the activity coefficient is approximately 
one under most reasonable experimental conditions. For reactions involv‑
ing only these species, the difference between activity and concentration is 
negligible. The activity coefficient for an ion, however, depends on the solu‑
tion’s ionic strength, the ion’s charge, and the ion’s size. It is possible to cal‑
culate activity coefficients using the extended debye‑hückel equation

log
.
.

γ
αA

A

A

µ
µ

=
− × ×

+ × ×

0 51
1 3 3

2z
6.63

where zA is the ion’s charge, αA is the effective diameter of the hydrated ion 
in nanometers (Table 6.2), m is the solution’s ionic strength, and 0.51 and 
3.3 are constants appropriate for an aqueous solution at 25 oC. An ion’s ef‑
fective hydrated radius is the radius of the ion plus those water molecules  
closely bound to the ion. The effective radius is greater for smaller, more 
highly charged ions than it is for larger, less highly charged ions. 

For a gas the proper terms are fugacity and 
fugacity coefficient, instead of activity and 
activity coefficient.

Table 6.2 Effective Diameters (a) for Selected Ions
Ion Effective Diameter (nm)

H3O+ 0.9
Li+ 0.6
Na+, IO3

–, HSO3
–, HCO3

–, H2PO4
– 0.45

OH–, F–, SCN–, HS–, ClO3
–, ClO4

–, MnO4
– 0.35

K+, Cl–, Br–, I–, CN–, NO2
–, NO3

– 0.3
Cs+, Tl+, Ag+, NH4

+ 0.25
Mg2+, Be2+ 0.8
Ca2+, Cu2+, Zn2+, Sn2+, Mn2+, Fe2+, Ni2+, Co2+ 0.6
Sr2+, Ba2+, Cd2+, Hg2+, S2– 0.5
Pb2+, CO3

2–, SO3
2– 0.45

Hg2
2+, SO4

2–, S2O3
2–, CrO4

2–, HPO4
2– 0.40

Al3+, Fe3+, Cr3+ 0.9
PO4

3–, Fe(CN)6
3– 0.4

Zr4+, Ce4+, Sn4+ 1.1
Fe(CN)6

4– 0.5
Source: Kielland, J. J. Am. Chem. Soc. 1937, 59, 1675–1678.

Unless otherwise specified, the equilib‑
rium constants in the appendices are ther‑
modynamic equilibrium constants.
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Several features of equation 6.63 deserve mention. First, as the ionic 
strength approaches zero an ion’s activity coefficient approaches a value of 
one. In a solution where m= 0, an ion’s activity and its concentration are 
identical. We can take advantage of this fact to determine a reaction’s ther‑
modynamic equilibrium constant by measuring the apparent equilibrium 
constant for several increasingly smaller ionic strengths and extrapolating 
back to an ionic strength of zero. Second, an activity coefficient is smaller, 
and the effect of activity is more important, for an ion with a higher charge 
and a smaller effective radius. Finally, the extended Debye‑Hückel equation 
provides a reasonable value for an ion’s activity coefficient when the ionic 
strength is less than 0.1. Modifications to equation 6.63 extend the calcula‑
tion of activity coefficients to higher ionic strengths.6

including actiVity coefficientS When SolVing equiliBrium proBlemS

Earlier in this chapter we calculated the solubility of Pb(IO3)2 in deionized 
water, obtaining a result of 4.0 × 10‑5 mol/L. Because the only significant 
source of ions is from the solubility reaction, the ionic strength is very low 
and we can assume that γ ≈ 1 for both Pb2+ and IO3

– . In calculating the 
solubility of Pb(IO3)2 in deionized water, we do not need to account for 
ionic strength.

But what if the we need to know the solubility of Pb(IO3)2 in a solu‑
tion containing other, inert ions? In this case we need to include activity 
coefficients in our calculation.

Example 6.14

Calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.

Solution

We begin by calculating the solution’s ionic strength. Since Pb(IO3)2 is 
only sparingly soluble, we will assume that we can ignore its contribution 
to the ionic strength; thus

= + + −{ }=1
2

0 020 2 0 040 1 0 0602 2( . ) ( . ( ) .M)( M) M

Next, we use equation 6.63 to calculate the activity coefficients for Pb2+ 
and IO3

–.

log
. ( ) .

. . .
γ

Pb2

0 51 2 0 060

1 3 3 0 45 0 060

2

+ =
− × + ×

+ × ×
=−−0 366.

γ
Pb2 0 431+ = .

6 Davies, C. W. Ion Association, Butterworth: London, 1962.

As is true for any assumption, we will need 
to verify that it does not introduce too 
much error into our calculation.
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log
. ( ) .

. . .
γ

IO3

0 51 1 0 060

1 3 3 0 45 0 060

2

− =
− × − ×

+ × ×
=−−0 0916.

γ
IO3

0 810− = .

Defining the equilibrium concentrations of Pb2+ and IO3
– in terms of the 

variable x

Concentrations Pb(IO3)2(s)  Pb2+ (aq) + 2IO3
– (aq)

Initial solid 0 0
Change solid +x +2x

Equilibrium solid x 2x

and substituting into the thermodynamic solubility product for Pb(IO3)2 
leaves us with

K a asp Pb IO Pb IO
Pb IO= = =+ − + −

+ −
2

3
2

3

2 2 2
3

2 2γ γ[ ] [ ] .55 10 13× −

K x xsp = = × −( . )( )( . ) ( ) .0 431 0 810 2 2 5 102 2 13

K xsp = = × −1 131 2 5 103 13. .

Solving for x gives 6.0 × 10–5, or a molar solubility of 6.0 × 10–5 mol/L. 
Ignoring activity, as we did in our earlier calculation, gives the molar solu‑
bility as 4.0 × 10‑5 mol/L. Failing to account for activity in this case un‑
derestimates the molar solubility of Pb(IO3)2 by 33%.

As this example shows, failing to correct for the effect of ionic strength 
can lead to a significant error in an equilibrium calculation. Nevertheless, 
it is not unusual to ignore activities and to assume that the equilibrium 
constant is expressed in terms of concentrations. There is a practical reason 
for this—in an analysis we rarely know the exact composition, much less 
the ionic strength of aqueous samples or of solid samples brought into 
solution. Equilibrium calculations are a useful guide when developing an 
analytical method; however, only by completing an analysis and evaluating 
the results can we judge whether our theory matches reality. In the end, 
our work in the laboratory is the most critical step in developing a reliable 
analytical method.

The solution’s equilibrium composition is

[Pb2+] = 6.0×10–5 M

[IO3
–] = 1.2×10–4 M

[Mg2+] = 0.020 M

[NO3
–] = 0.040 M

Because the concentrations of Pb2+ and 
IO3

– are much smaller than the concen‑
trations of Mg2+ and NO3

–, our decision 
to ignore the contribution of Pb2+ and 
IO3

– to the ionic strength is reasonable.

How do we handle the calculation if we 
can not ignore the concentrations of Pb2+ 
and IO3

– ?  One approach is to use the 
method of successive approximations. 
First, we recalculate the ionic strength 
using the concentrations of all ions, in‑
cluding Pb2+ and IO3

–. Next, we recal‑
culate the activity coefficients for Pb2+ 
and IO3

–, and then recalculate the molar 
solubility. We continue this cycle until 
two successive calculations yield the same 
molar solubility within an acceptable mar‑
gin of error.

Practice Exercise 6.13
Calculate the molar solubility of Hg2Cl2 in 0.10 M NaCl, taking into 
account the effect of ionic strength. Compare your answer to that from 
Practice Exercise 6.8 in which you ignored the effect of ionic strength.

Click here to review your answer to this exercise.

This is a good place to revisit the meaning 
of pH. In Chapter 2 we defined pH as

pH H O3= − +log[ ]

Now we see that the correct definition is

pH H O
H O H O 33 3

+ += − −= +log log [ ]a γ

Failing to account for the effect of ionic 
strength can lead to a significant error in 
the reported concentration of H3O+. For 
example, if the pH of a solution is 7.00 
and the activity coefficient for H3O+ is 
0.90, then the concentration of H3O+ is 
1.11 × 10–7 M, not 1.00 × 10–7 M, an 
error of +11%. Fortunately, in developing 
and carrying out analytical methods, we 
are more interested in controlling pH than 
in calculating [H3O+]. As a result, the dif‑
ference between the two definitions of pH 
is rarely a significant concern.
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6J Using Excel and R to Solve Equilibrium Problems
In solving equilibrium problems we typically make one or more assump‑
tions to simplify the algebra. These assumptions are important because they 
allow us to reduce the problem to an equation in x that we can solve by 
simply taking a square‑root, a cube‑root, or by using the quadratic equa‑
tion.  Without these assumptions, most equilibrium problems result in a 
cubic equation (or a higher‑order equation) that is harder to solve. Both 
Excel and R are useful tools for solving such equations.

6J.1 Excel 

Excel offers a useful tool—the Solver function—for finding a polynomial 
equation’s chemically significant roo. In addition, it is easy to solve a system 
of simultaneous equations by constructing a spreadsheet that allows you to 
test and evaluate multiple solutions. Let’s work through two examples.

example 1: SoluBility of pB(io3)2 in 0.10 m pB(no3)2

In our earlier treatment of this problem we arrived at the following cubic 
equation

4 0 40 2 5 103 2 13x x+ = × −. .

where x is the equilibrium concentration of Pb2+. Although there are sev‑
eral approaches for solving cubic equations, none are computationally easy. 
One approach is to iterate in on the answer by finding two values of x, one 
of which leads to a result larger than 2.5×10–13 and one of which gives a 
result smaller than 2.5×10–13. Having established boundaries for the value 
of x, we then shift the upper limit and the lower limit until the precision 
of our answer is satisfactory. Without going into details, this is how Excel’s 
Solver function works.

To solve this problem, we first rewrite the cubic equation so that its 
right‑side equals zero.

4 0 40 2 5 10 03 2 13x x+ − × =−. .

Next, we set up the spreadsheet shown in Figure 6.17a, placing the formula 
for the cubic equation in cell B2, and entering our initial guess for x in 

A B
1 x = 0

2 function = 4*b1^3 + 0.4*b1^2 – 2.5e–13

A B
1 x = 7.90565E–07

2 function –5.71156E–19

(a)

(b)

Figure 6.17 Spreadsheet demonstrating the use of 
Excel’s Solver function to find the root of a cubic 
equation. The spreadsheet in (a) shows the cubic 
equation in cell B2 and the initial guess for the value 
of x in cell B1; Excel replaces the formula with its 
equivalent value. The spreadsheet in (b) shows the 
results of running Excel’s Solver function.
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cell B1. We expect x to be small—because Pb(IO3)2 is not very soluble—
so setting our initial guess to 0 seems reasonable. Finally, we access the 
Solver function by selecting Solver... from the Tools menu, which opens 
the Solver Parameters window. 

To define the problem, place the cursor in the box for Set Target Cell 
and then click on cell B2. Select the Value of: radio button and enter 0 in 
the box. Place the cursor in the box for By Changing Cells: and click on cell 
B1. Together, these actions instruct the Solver function to change the value 
of x, which is in cell B1, until the cubic equation in cell B2 equals zero. 

Before we actually solve the function, we need to consider whether 
there are any limitations for an acceptable result. For example, we know 
that x cannot be smaller than 0 because a negative concentration is not 
possible. We also want to ensure that the solution’s precision is acceptable. 
Click on the button labeled Options... to open the Solver Options window. 
Checking the option for Assume Non-Negative forces the Solver to maintain 
a positive value for the contents of cell B1, meeting one of our criteria. Set‑
ting the precision takes a bit more thought. The Solver function uses the 
precision to decide when to stop its search, doing so when

expected value calculated value precisi− × ≤100 oon (%)

where expected value is the target cell’s desired value (0 in this case), calcu-
lated value is the function’s current value (cell B1 in this case), and precision 
is the value we enter in the box for Precision. Because our initial guess of 
x = 0 gives a calculated result of 2.5×10–13, accepting the Solver’s default 
precision of 1×10–6 stops the search after one cycle. To be safe, set the pre‑
cision to 1×10–18. Click OK and then Solve. When the Solver function 
finds a solution, the results appear in your spreadsheet (see Figure 6.17b). 
Click OK to keep the result, or Cancel to return to the original values. 
Note that the answer here agrees with our earlier result of 7.91×10–7 M 
for the solubility of Pb(IO3)2.

example 2: ph of 1.0 m hf

In developing our solution to this problem we began by identifying four 
unknowns and writing out the following four equations.

K a
3H O F

HF
= = ×

+ −
−[ ][ ]

[ ]
.6 8 10 4

K w 3H O OH= = ×+ − −[ ][ ] .1 00 10 14

CHF HF F= + −[ ] [ ]

[ ] [ ] [ ]H O OH F3
+ − −= +

Be sure to evaluate the reasonableness of 
Solver’s answer. If necessary, repeat the 
process using a smaller value for the preci‑
sion.
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From this point, we made two assumptions, simplifying the problem to 
one that was easy to solve. 

[ ] ( . )( . ) .H O3 a HF
+ − −= = × = ×K C 6 8 10 1 0 2 6 104 2

Although we did not note this at the time, without making assumptions 
the solution to our problem is a cubic equation

[ ] [ ]

( )[ ]

H O H O

H O
3 a 3

a HA w 3 a w

+ +

+

+

− + − =

3 2

0

K

K C K K K
6.64

that we can solve using Excel’s Solver function. Of course, this assumes that 
we successfully complete the derivation!

Another option is to use Excel to solve the equations simultaneously 
by iterating in on values for [HF], [F–], [H3O+], and [OH–]. Figure 6.18a 
shows a spreadsheet for this purpose. The cells in the first row contain  our 
initial guesses for the equilibrium pH. Using the ladder diagram in Figure 
6.14, choosing pH values between 1 and 3 seems reasonable. You can add 
additional columns if you wish to include more pH values. The formulas 
in rows 2–5 use the definition of pH to calculate [H3O+], Kw to calculate 
[OH–], the charge balance equation to calculate [F–], and Ka to calculate 
[HF]. To evaluate the initial guesses, we use the mass balance expression 
for HF, rewriting it as

[ ] [ ] [ ] [ ] .HF F HF FHF+ − = + − =− −C 1 0 0

and entering it in the last row. This cell gives the calculation’s error
Figure 6.18b shows the actual values for the spreadsheet in Figure 6.18a.

The negative value in cells B6 and C6 means that the combined concentra‑
tions of HF and F– are too small, and the positive value in cell D6 means 
that the combined concentrations are too large. The actual pH, therefore, 
must lie between 2.00 and 1.00. Using these pH values as new limits for 
the spreadsheet’s first row, we continue to narrow the range for the actual 
pH. Figure 6.18c shows a final set of guesses, with the actual pH falling 
between 1.59 and 1.58. Because the error for 1.59 is smaller than that for 
1.58, we will accept a pH of 1.59 as the answer. Note that this is an agree‑
ment with our earlier result.

Practice Exercise 6.14
Using Excel, calculate the solubility of AgI in 0.10 M NH3 without mak‑
ing any assumptions. See our earlier treatment of this problem for the 
relevant equilibrium reactions and constants.

Click here to review your answer to this exercise.

You also can solve this set of simultaneous 
equations using Excel’s Solver function. 
To do so, create the spreadsheet in Figure 
6.18a, but omit all columns other than 
A and B. Select Solver... from the Tools 
menu and define the problem by using B6 
for Set Target Cell and setting its desired 
value to 0, and selecting B1 for By Chang-
ing Cells:. You may need to play with the 
Solver’s options to find a suitable solution 
to the problem, and it is wise to try several 
different initial guesses. 

The Solver function works well for rela‑
tively simple problems, such as finding 
the pH of 1.0 M HF. As problems become 
more complex—such as solving an equi‑
librium problem with lots of unknowns—
the Solver function becomes less reliable 
in finding a solution.
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6J.2 R

R has a simple command—uniroot—for finding the chemically significant 
root of a polynomial equation. In addition, it is easy to write a function 
to solve a set of simultaneous equations by iterating in on a solution. Let’s 
work through two examples.

example 1: SoluBility of pB(io3)2 in 0.10 m pB(no3)2

In our earlier treatment of this problem we arrived at the following cubic 
equation

4 0 40 2 5 103 2 13x x+ = × −. .

(a)

(b)

Figure 6.18 Spreadsheet demonstrating the use of Excel to solve a set of simultaneous equations. The spreadsheet 
in (a) shows the initial guess for [H3O+] in the first row, and the formulas that you must enter in rows 2–6. Enter 
the formulas in cells B2–B6 and then copy and paste them into the appropriate cells in the remaining columns. 
As shown in (b), Excel replaces the formulas with their equivalent values. The spreadsheet in (c) shows the results 
after our final iteration. See the text for further details.

(c)

A B C D
1 pH = 3.00 2.00 1.00

2 [H3O+] = = 10^–b1 = 10^–c1 = 10^–d1
3 [OH‑] = = 1e–14/b2 = 1e–14/c2 = 1e–14/d2
4 [F‑] = = b2 – b3 = c2 – c3 = d2 – d3
5 [HF] = = (b2 * b4)/6.8e–4 = (c2 * c4)/6.8e–4 = (d2 * d4)/6.8e–4
6 error = b5 + b4 – 1 = c5 + c4 – 1 = d5 + d4 – 1

A B C D
1 pH = 3.00 2.00 1.00

2 [H3O+] = 1.00E‑03 1.00E‑02 1.00E‑1

3 [OH‑] = 1.00E–11 1.00E–12 1.00E–13

4 [F‑] = 1.00E–03 1.00E–02 1.00E–01

5 [HF] = 0.001470588 0.147058824 14.70588235

6 error ‑9.98E‑01 ‑8.43E‑01 1.38E+01

A B C D
1 pH = 1.59 1.58 1.57

2 [H3O+] = 2.57E‑02 2.63E‑02 2.69E‑02

3 [OH‑] = 3.89E‑13 3.80E‑13 3.72E‑13

4 [F‑] = 2.57E‑02 2.63E‑02 2.69E‑02

5 [HF] = 0.971608012 1.017398487 1.065347

6 error ‑2.69E‑03 4.37E‑02 9.23E‑02



264 Analytical Chemistry 2.0

where x is the equilibrium concentration of Pb2+. Although there are sev‑
eral approaches for solving cubic equations, none are computationally easy. 
One approach to solving the problem is to iterate in on the answer by find‑
ing two values of x, one of which leads to a result larger than 2.5×10–13 
and one of which gives a result smaller than 2.5×10–13. Having established 
boundaries for the value of x, we then shift the upper limit and the lower 
limit until the precision of our answer is satisfactory. Without going into 
details, this is how the uniroot command works.

The general form of the uniroot command is

uniroot(function, lower, upper, tol)

where function is an object containing the equation whose root we are 
seeking, lower and upper and boundaries for the root, and tol is the desired 
accuracy for the root. To create an object containing the equation, we must 
rewrite it so that its right‑side equals zero.

4 0 40 2 5 10 03 2 13x x+ − × =−. .

Next, we enter the following code, which defines our cubic equation as a 
function with the name eqn.  

> eqn = function(x) 4*x^3 + 0.4*x^2 – 2.5e–13
Because our equation is a function, the uniroot command can send a value 
of x to eqn and receive back the equation’s corresponding value. Finally, we 
use the uniroot command to find the root. 

> uniroot(eqn, lower = 0, upper = 0.1, tol = 1e–18)
We expect x to be small—because Pb(IO3)2 is not very soluble—so set‑
ting the lower limit to 0 is a reasonable choice. The choice for the upper 
limit is less critical. To ensure that the solution has sufficient precision, the 
tolerance should be smaller than the expected root. Figure 6.19 shows the 
resulting output. The value $root is the equation’s root, which is in good 
agreement with our earlier result of 7.91×10–7 for the molar solubility of 
Pb(IO3)2. The other results are the equation’s value for the root, the number 
of iterations needed to find the root, and the root’s estimated precision.

example 2: ph of 1.0 m hf

In developing our solution to this problem we began by identifying four 
unknowns and writing out the following four equations.

K a
3H O F

HF
= = ×

+ −
−[ ][ ]

[ ]
.6 8 10 4

K w 3H O OH= = ×+ − −[ ][ ] .1 00 10 14

CHF HF F= + −[ ] [ ]

Figure 6.19 The summary of R’s 
output from the uniroot com‑
mand. See the text for a discussion 
of how to interpret the results.

For example, entering

 > eqn(2)

passes the value x = 2 to the function and 
returns an answer of 33.6.

$root
[1] 7.905663e-07

$f.root
[1] 0

$iter
[1] 46

$estim.prec
[1] 1.827271e-12
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[ ] [ ] [ ]H O OH F3
+ − −= +

From this point, we made two assumptions, simplifying the problem to 
one that was easy to solve. 

[ ] ( . )( . ) .H O3 a HF
+ − −= = × = ×K C 6 8 10 1 0 2 6 104 2

Although we did not note this at the time, without making assumptions 
the solution to our problem is a cubic equation

[ ] [ ]

( )[ ]

H O H O

H O
3 a 3

a HA w 3 a w

+ +

+

+

− + − =

3 2

0

K

K C K K K

that we can solve using the uniroot command. Of course, this assumes that 
we successfully complete the derivation!

Another option is to use write a function to solve simultaneously the 
four equations for the variables [HF], [F–], [H3O+], and [OH–]. Here is 
the code for this function, which we will call eval.

> eval = function(pH){
+ h3o =10^–pH
+ oh = 1e–14/h3o
+ hf = (h3o*f )/6.8e–4
+ error = hf + f – 1
+ output = data.frame(pH, error)
+ print(output)
+ }

Let’s examine more closely how this function works. The function accepts 
a guess for the pH and uses the definition of pH to calculate [H3O+], Kw 
to calculate [OH–], the charge balance equation to calculate [F–], and Ka 
to calculate [HF]. The function then evaluates the solution using the mass 
balance expression for HF, rewriting it as

[ ] [ ] [ ] [ ] .HF F HF FHF+ − = + − =− −C 1 0 0

The function then gathers together the initial guess for the pH and the error 
and prints them as a table.

The beauty of this function is that the object we pass to it, pH, can 
contain many values, allowing us to easily search for a solution. Because 
HF is an acid, we know that the solution must be acidic. This sets a lower 
limit of 7 for the pH. We also know that the pH of 1.0 M HF can be no 
larger than 1.0 M as this would be the upper limit if HF was a strong acid. 
For our first pass, let’s enter the following code

> pH = c(7, 6, 5, 4, 3, 2, 1)
> func(pH)

The open { tells R that we intend to enter 
our function over several lines. When we 
press enter at the end of a line, R changes 
its prompt from > to +, indicating that 
we are continuing to enter the same com‑
mand. The close } on the last line indicates 
that we are done entering the function.

The command data.frame combines two 
or more objects into a table.

You can adapt this function to other prob‑
lems by changing the variable you pass to 
the function and the equations you in‑
clude within the function.
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which varies the pH within these limits. The result, which is shown in 
Figure 6.20a, indicates that the pH must be less than 2 and greater than 1 
because it is in this interval that the error changes sign.

For our second pass, we explore pH values between 2.0 and 1.0 to 
further narrow down the problem’s solution. 

> pH = c(2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0)
> func(pH)

The result in Figure 6.20b show that the pH must be less than 1.6 and 
greater than 1.5. A third pass between these limits gives the result shown in 
Figure 6.20c, which is consistent with our earlier result of a pH 1.59.

Figure 6.20 The output of three iterations to find the pH for a solution of 1.0 M HF. The results are for pH 
values between (a) 7 and 0, (b) 2.0 and 1.0, and (c) 1.60 M and 1.50. The columns labeled “error” show an 
evaluation of the mass balance equation for HF, with positive values indicating that the pH is too low and 
negative values indicating that the pH is too high.

Practice Exercise 6.15
Using R, calculate the solubility of AgI in 0.10 M NH3 without mak‑
ing any assumptions. See our earlier treatment of this problem for the 
relevant equilibrium reactions and constants

Click here to review your answer to this exercise.

6K Some Final Thoughts on Equilibrium Calculations
In this chapter we have developed several tools for evaluating the composi‑
tion of a system at equilibrium. These tools differ in how accurately they 
allow us to answer questions involving equilibrium chemistry. They also 
differ in their ease of use. An important part of having several tools avail‑
able to you is knowing when to use them. If you need to know whether 
a reaction if favorable, or to estimate the pH of a solution, then a ladder 
diagram will meet your needs. On the other hand, if you require a more 

(a) (b) (c)  pH        error
1  7   -1.0000000
2  6   -0.9999990
3  5   -0.9999899
4  4   -0.9998853
5  3   -0.9975294
6  2   -0.8429412
7  1   13.8058824
8  0 1470.5882353

    pH       error
1  2.0 -0.84294118
2  1.9 -0.75433822
3  1.8 -0.61475600
4  1.7 -0.39459566
5  1.6 -0.04700269
6  1.5  0.50221101
7  1.4  1.37053600
8  1.3  2.74406936
9  1.2  4.91761295
10 1.1  8.35821730
11 1.0 13.80588235

     pH        error
1  1.60 -0.047002688
2  1.59 -0.002688030
3  1.58  0.043701167
4  1.57  0.092262348
5  1.56  0.143097544
6  1.55  0.196313586
7  1.54  0.252022331
8  1.53  0.310340901
9  1.52  0.371391928
10 1.51  0.435303816
11 1.50  0.502211012
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accurate estimate of a compound’s solubility, then a rigorous calculation 
that includes activity coefficients is necessary.

A critical part of solving an equilibrium problem is knowing what equi‑
librium reactions to include. The importance of including all relevant reac‑
tions is obvious, and at first glance this does not appear to be a significant 
problem—it is, however, a potential source of significant errors. The tables 
of equilibrium constants in this textbook, although extensive, are a small 
subset of all known equilibrium constants, making it easy to overlook an 
important equilibrium reaction. Commercial and freeware computational 
programs with extensive databases are available for equilibrium modeling. 
Two excellent freeware programs are Visual Minteq (Windows only) and 
ChemEQL (Windows, Mac, Linux, and Solaris). These programs also in‑
clude the ability to account for ionic strength.

Finally, a consideration of equilibrium chemistry can only help us de‑
cide if a reaction is favorable. It does not, however, guarantee that the reac‑
tion occurs. How fast a reaction approaches its equilibrium position does 
not depend on the equilibrium constant. The rate of a chemical reaction 
is a kinetic, not a thermodynamic, phenomenon. We will consider kinetic 
effects and their application in analytical chemistry in Chapter 13.

6L Key Terms
acid acid dissociation constant activity
activity coefficient amphiprotic base
base dissociation constant buffer buffer capacity
charge balance equation common ion effect cumulative formation 

constant
dissociation constant enthalpy entropy
equilibrium equilibrium constant extended Debye‑Hückel 

equation
formation constant Gibb’s free energy half‑reaction
Henderson–Hasselbalch 
equation

ionic strength ladder diagram

Le Châtelier’s principle ligand mass balance equation
metal–ligand complex method of successive 

approximations
monoprotic

Nernst equation oxidation oxidizing agent
pH scale polyprotic potential
precipitate redox reaction reducing agent
reduction standard‑state standard potential
steady state stepwise formation 

constant
solubility product

As you review this chapter, try to define  a 
key term in your own words. Check your 
answer by clicking on the key term, which 
will take you to the page where it was first 
introduced. Clicking on the key term 
there, will bring you back to this page so 
that you can continue with another key 
term.

http://www.lwr.kth.se/english/OurSoftWare/Vminteq/
http://www.eawag.ch/research_e/surf/Researchgroups/sensors_and_analytic/chemeql.html
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6M Chapter Summary
Analytical chemistry is more than a collection of techniques; it is the ap‑
plication of chemistry to the analysis of samples. As we will see in later 
chapters, almost all analytical methods use chemical reactivity to accom‑
plish one or more of the following: dissolve the sample, separate analytes 
from interferents, transform the analyte to a more useful form, or provide 
a signal. Equilibrium chemistry and thermodynamics provide us with a 
means for predicting which reactions are likely to be favorable.

The most important types of reactions are precipitation reactions, acid–
base reactions, metal‑ligand complexation reactions, and redox reactions. 
In a precipitation reaction two or more soluble species combine to produce 
an insoluble product called a precipitate, which we characterize using a 
solubility product.

An acid–base reaction occurs when an acid donates a proton to a base. 
The reaction’s equilibrium position is described using either an acid dis‑
sociation constant, Ka, or a base dissociation constant, Kb. The product of 
Ka and Kb for an acid and its conjugate base is the dissociation constant for 
water, Kw.

When a ligand donates one or more pairs of electron to a metal ion, 
the result is a metal–ligand complex. Two types of equilibrium constants 
are used to describe metal–ligand complexation—stepwise formation con‑
stants and overall formation constants.  There are two stepwise formation 
constants for the metal–ligand complex ML2, each describing the addition 
of one ligand; thus, K1 represents the addition of the first ligand to M, and 
K2 represents the addition of the second ligand to ML. Alternatively, we can 
use a cumulative, or overall formation constant, b2, for the metal–ligand 
complex ML2, in which both ligands are added to M.

In a redox reaction, one of the reactants undergoes oxidation and an‑
other reactant undergoes reduction. Instead of using an equilibrium con‑
stants to characterize a redox reactions, we use the potential, positive values 
of which indicate a favorable reaction. The Nernst equation relates this 
potential to the concentrations of reactants and products.

Le Châtelier’s principle provides a means for predicting how a system 
at equilibrium responds to a change in conditions. If we apply a stress to 
a system at equilibrium—by adding a reactant or product, by adding a 
reagent that reacts with one of the reactants or products, or by changing 
the volume—the system responds by moving in the direction that relieves 
the stress.

You should be able to describe a system at equilibrium both qualitatively 
and quantitatively. You can develop a rigorous solution to an equilibrium 
problem by combining equilibrium constant expressions with appropriate 
mass balance and charge balance equations. Using this systematic approach, 
you can solve some quite complicated equilibrium problems. If a less rigor‑
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ous answer is acceptable, then a ladder diagram may help you estimate the 
equilibrium system’s composition.

Solutions containing relatively similar amounts of a weak acid and its 
conjugate base experience only a small change in pH upon adding a small 
amount of a strong acid or a strong base. We call these solutions buffers. A 
buffer can also be formed using a metal and its metal–ligand complex, or 
an oxidizing agent and its conjugate reducing agent. Both the systematic 
approach to solving equilibrium problems and ladder diagrams are useful 
tools for characterizing buffers.

A quantitative solution to an equilibrium problem may give an answer 
that does not agree with experimental results if we do not consider the ef‑
fect of ionic strength. The true, thermodynamic equilibrium constant is a 
function of activities, a, not concentrations. A species’ activity is related to 
its molar concentration by an activity coefficient, γ. Activity coefficients can 
be calculated using the extended Debye‑Hückel equation, making possible 
a more rigorous treatment of equilibria.

6N Problems

1. Write equilibrium constant expressions for the following reactions. 
What is the value for each reaction’s equilibrium constant?

a. NH HCl NH Cl3 4( ) ( ) ( ) ( )aq aq aq aq+ ++ −
  

b. PbI S PbS I2
2 2( ) ( ) ( ) ( )s aq s aq+ +− −

  

c Cd(EDTA) CN Cd(CN) EDTA2
4
2 44− − −+ +( ) ( ) ( )aq aq aq

−−( )aq

d. AgCl NH Ag(NH Cl( ) ( ) ( ) ( ))s aq aq aq+ ++ −2 3 3 2

e. BaCO H O Ba H CO H O3 2 23
2

3( ) ( ) ( ) ( ) ( )s aq aq aq l+ + ++ +


2. Using a ladder diagram, explain why the first reaction is favorable and 
the second reaction is unfavorable.

H PO F HF H PO3 24 4( ) ( ) ( ) ( )aq aq aq aq+ +− −


H PO F HF HPO3 4 4
22 2( ) ( ) ( ) ( )aq aq aq aq+ +− −



 Determine the equilibrium constant for these reactions and verify that 
they are consistent with your ladder diagram.

3. Calculate the potential for the following redox reaction for a solution 
in which [Fe3+] = 0.050 M, [Fe2+] = 0.030 M, [Sn2+] = 0.015 M and 
[Sn4+] = 0.020 M.

2 23 2 4 2Fe Sn Sn Fe+ + + ++ +( ) ( ) ( ) ( )aq aq aq aq

Most of the problems that follow require one or 
more equilibrium constants or standard state po‑
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 

Appendix 10: Solubility Products

Appendix 11: Acid Dissociation Constants

Appendix 12: Metal‑Ligand Formation Constants

Appendix 13: Standard State Reduction Potentials
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4. Calculate the standard state potential and the equilibrium constant for 
each of the following redox reactions. Assume that [H3O+] is 1.0 M for 
acidic solutions, and that [OH–] is 1.0 M for basic solutions.

a. MnO H SO Mn SO2 acidi4 3
2

4
2− + −+ +( ) ( ) ( ) ( )aq aq aq aq cc solution

b.  IO I I acidic solution3 2
− −+( ) ( ) ( )aq aq s

c. ClO I IO Cl basic solut− − − −+ +( ) ( ) ( ) ( )aq aq aq aq 3 iion

5. One analytical method for determining the concentration of sulfur is 
to oxidize it to SO4

2‑ and then precipitate it as BaSO4 by adding BaCl2. 
The mass of the resulting precipitate is proportional to the amount of 
sulfur in the original sample. The accuracy of this method depends on 
the solubility of BaSO4, the reaction for which is shown here.

BaSO Ba SO4
2

4
2( ) ( ) ( )s aq aq

+ −+

 How do the following affect the solubility of BaSO4 and, therefore, the 
accuracy of the analytical method? 

a. decreasing the solution’s pH
b. adding more BaCl2
c. increasing the volume of the solution by adding H2O

6. Write a charge balance equation and mass balance equations for the fol‑
lowing solutions. Some solutions may have more than one mass balance 
equation.

 a. 0.10 M NaCl
 b. 0.10 M HCl
 c. 0.10 M HF
 d. 0.10 M NaH2PO4
 e. MgCO3 (saturated solution)
 f. 0.10 M Ag(CN)2

–

 g. 0.10 M HCl and 0.050 M NaNO2

7. Using the systematic approach to equilibrium problems, calculate the 
pH of the following solutions. Be sure to state and justify any assump‑
tions you make in solving the problems.

 a.  0.050 M HClO4

 b. 1.00 × 10–7 M HCl
 c. 0.025 M HClO
 d. 0.010 M HCOOH
 e. 0.050 M Ba(OH)2
 f.  0.010 M C5H5N

These redox reactions in this problem are 
not balanced. You will need to balance the 
reactions before calculating their standard 
state potentials. Although you may recall 
how to do this from another course, there 
is a much easier approach that you can use 
here. Identify the oxidizing agent and the 
reducing agent and divide the reaction into 
two unbalanced half‑reactions. Using Ap‑
pendix 13, find the appropriate balanced 
half‑reactions. Add the two half‑reactions 
together and simplify the stoichiometry to 
arrive at the balanced redox reaction.

As an example, in (a) the oxidizing agent is 
MnO4

– and its unbalanced half‑reaction 
is

MnO Mn4
25− − ++( ) ( )aq e aq

The corresponding balanced half‑reaction 
from Appendix 13 is

MnO H

Mn H O2

4
2

8 5

4

− + −

+

+ +

+

( ) ( )

( ) ( )

aq aq e

aq l



Most of the problems that follow require one or 
more equilibrium constants or standard state po‑
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 

Appendix 10: Solubility Products

Appendix 11: Acid Dissociation Constants

Appendix 12: Metal‑Ligand Formation Constants

Appendix 13: Standard State Reduction Potentials



271Chapter 6 Equilibrium Chemistry

8. Construct ladder diagrams for the following diprotic weak acids (H2L) 
and estimate the pH of 0.10 M solutions of H2L, HL– and L2–. 

 a. maleic acid
 b. malonic acid
 c. succinic acid

9. Using the systematic approach to solving equilibrium problems, calcu‑
late the pH of the diprotic weak acid in problem 8. Be sure to state and 
justify any assumptions you make in solving the problems.

10. Ignoring activity effects, calculate the concentration of Hg2
2+ in the 

following solutions. Be sure to state and justify any assumption you 
make in solving the problems.

 a. a saturated solution of Hg2Br2
 b. 0.025 M Hg2(NO3)2 saturated with Hg2Br2
 c. 0.050 M NaBr saturated with Hg2Br2

11. The solubility of CaF2 is controlled by the following two reactions
CaF Ca F2

2 2( ) ( ) ( )s aq aq

+ −+  
HF H O H O F2 3( ) ( ) ( ) ( )aq l aq aq+ ++ −



 Calculate the solubility of CaF2 in a solution buffered to a pH of 7.00. 
Use a ladder diagram to help simplify the calculations. How would your 
approach to this problem change if the pH is buffered to 2.00?  What 
is the solubility of CaF2 at this pH? Be sure to state and justify any as‑
sumptions you make in solving the problems.

12. Calculate the solubility of Mg(OH)2 in a solution buffered to a pH of 
7.00. How does this compare to its solubility in unbuffered deionized 
water? Be sure to state and justify any assumptions you make in solving 
the problem.

13. Calculate the solubility of Ag3PO4 in a solution buffered to a pH of 
7.00. Be sure to state and justify any assumptions you make in solving 
the problem. 

14. Determine the equilibrium composition of saturated solution of AgCl. 
Assume that the solubility of AgCl is influenced by the following reac‑
tions.  

AgCl Ag Cl( ) ( ) ( )s aq aq

+ −+

Ag Cl AgCl+ −+( ) ( ) ( )aq aq aq

AgCl Cl AgCl( ) ( ) ( )aq aq aq+ − −
 2

 Be sure to state and justify any assumptions you make in solving the 
problem.

Most of the problems that follow require one or 
more equilibrium constants or standard state po‑
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 

Appendix 10: Solubility Products

Appendix 11: Acid Dissociation Constants

Appendix 12: Metal‑Ligand Formation Constants

Appendix 13: Standard State Reduction Potentials
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15. Calculate the ionic strength of the following solutions

 a. 0.050 M NaCl
 b. 0.025 M CuCl2
 c. 0.10 M Na2SO4

16. Repeat the calculations in problem 10, this time correcting for the effect 
of ionic strength. Be sure to state and justify any assumptions you make 
in solving the problems.

17. Over what pH range do you expect Ca3(PO4)2 to have its minimum 
solubility?

18. Construct ladder diagrams for the following systems, each consisting 
of two or three equilibria. Using your ladder diagrams, what reactions 
are likely to occur in each system?

 a. HF and H3PO4 
 b. Ag(CN)2

–, Ni(CN)4
2– and Fe(CN)6

3–

 c. Cr2O7
2–/Cr3+ and Fe3+/Fe2+

19. Calculate the pH of the following acid–base buffers. Be sure to state 
and justify any assumptions you make in solving the problems.

 a. 100 mL of 0.025 M formic acid and 0.015 M sodium formate
 b. 50.00 mL of 0.12 M NH3 and 5.30 mL of 1.0 M HCl
 c. 5.00 g of Na2CO3 and 5.00 g of NaHCO3 diluted to 100 mL

20. Calculate the pH of the buffers in problem 19 after adding 5.0 mL of 
0.10 M HCl. Be sure to state and justify any assumptions you make in 
solving the problems.

21. Calculate the pH of the buffers in problem 19 after adding 5.0 mL of 
0.10 M NaOH. Be sure to state and justify any assumptions you make 
in solving the problems.

22. Consider the following hypothetical complexation reaction between a 
metal, M, and a ligand, L

M L ML( ) ( ) ( )aq aq aq+ 

 with a formation constant of 1.5 × 108 . Derive an equation, similar to 
the Henderson–Hasselbalch equation, relating pM to the concentra‑
tions of L and ML. What is the pM for a solution containing 0.010 
mol of M and 0.020 mol of L?  What is pM be if  you add 0.002 mol 
of M to this solution? Be sure to state and justify any assumptions you 
make in solving the problem.

23. A redox buffer contains an oxidizing agent and its conjugate reducing 
agent. Calculate the potential of a solution containing 0.010 mol of 
Fe3+ and 0.015 mol of Fe2+. What is the potential if you add sufficient 

Most of the problems that follow require one or 
more equilibrium constants or standard state po‑
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 

Appendix 10: Solubility Products

Appendix 11: Acid Dissociation Constants

Appendix 12: Metal‑Ligand Formation Constants

Appendix 13: Standard State Reduction Potentials
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oxidizing agent to convert 0.002 mol of Fe2+ to Fe3+? Be sure to state 
and justify any assumptions you make in solving the problem.

24. Use either Excel or R to solve the following problems. For these prob‑
lems, make no simplifying assumptions.
a. the solubility of CaF2 in deionized water

b. the solubility of AgCl in deionized water (see Problem 14 for the 
relevant equilibria)

c.  the pH of 0.10 M fumaric acid

25. Beginning with the relevant equilibrium reactions, derive equation 
6.64 for the rigorous solution to the pH of 0.1 M HF.

6O Solutions to Practice Exercises
Practice Exercise 6.1
The overall reaction is equivalent to

Rxn Rxn4 2 1− ×
Subtracting a reaction is equivalent to adding the reverse reaction; thus, 
the overall equilibrium constant is

K
K

K
=
( )

= = ≈4

1

2 2

5 0
0 40

31 25 31
.

( . )
.

Click here to return to the chapter.

Practice Exercise 6.2
The Kb for hydrogen oxalate is

K
K

Kb,HC O
w

a,H C O
2

2 2 4

4

1 00 10
5 60 10

1
14

2− = =
×
×

=
−

−

.
.

..79 10 13× −

and the Kb for oxalate is

K
K

Kb,C O
w

a,HC O
2

2 4
‑

4
2

1 00 10
5 42 10

1
14

5− = =
×
×

=
−

−

.
.

..85 10 10× −

As we expect, the Kb value for C2O4
2– is larger than that for HC2O4

–. 

Click here to return to the chapter.

Practice Exercise 6.3
We can write the reaction as a sum of three other reactions. The first reac‑
tion is the solubility of AgCl(s), which we characterize by its Ksp.

Most of the problems that follow require one or 
more equilibrium constants or standard state po‑
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 

Appendix 10: Solubility Products

Appendix 11: Acid Dissociation Constants

Appendix 12: Metal‑Ligand Formation Constants

Appendix 13: Standard State Reduction Potentials
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AgBr Ag Br( ) ( ) ( )s aq aq

+ −+

The remaining two reactions are the stepwise formation of Ag(S2O3)2
3–, 

which we characterize by K1 and K2.

Ag S O Ag S O2 2 3
+ − −+( ) ( ) ( )( )aq aq aq3

2


Ag S O S O Ag S O2 3 2 2 3( ) ( )( ) ( ) ( )− − −+aq aq aq3
2

2
3



Using values for Ksp, K1, and K2 from Appendix 10 and Appendix 11, we 
find that the equilibrium constant for our reaction is

K K K K= × × = × × × =−
sp 1 2 ( . )( . )( . )5 0 10 6 6 10 7 1 10 213 8 4 33

Click here to return to the chapter.

Practice Exercise 6.4
The two half‑reactions are the oxidation of Fe2+ and the reduction of 
MnO4

–.

Fe Fe2 3+ + −+( ) ( )aq aq e

MnO H Mn H O24
28 5 4− + − ++ + +( ) ( ) ( ) ( )aq aq aq le 

From Appendix 13, the standard state reduction potentials for these half‑
reactions are

E E
Fe Fe
o

MnO Mn
oV V3 2

4
20 771 1 51+ + − += =

/ /
. .

(a)  The standard state potential for the reaction is

E E E
n

o
MnO M
o

Fe Fe
o V V= − = − =− + + +

4
2 3 2 1 51 0 771

/ /
. . 00 74. V

(b) To calculate the equilibrium constant we substitute appropriate values 
into equation 6.25.

E Ko V= =0 74
0 05916

5
.

.
log

Solving for K gives its value as
log .K = 62 5        K = ×3 2 1062.

(c) To calculate the potential under these non‑standard state conditions, 
we make appropriate substitutions into the Nernst equation.

E E
RT
nF

= −
+ +

− + +
o Mn Fe

MnO Fe H
ln

[ ][ ]
[ ][ ] [ ]

2 3 5

4
2 5 8
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E = −0 74
0 05916

5
0 015 0 10

0 025 0 5

5

.
.

log
( . )( . )

( . )( . 00 1 105 7 8) ( )× −

E = −0 74
0 05916

5
0 015 0 10

0 025 0 5

5

.
.

log
( . )( . )

( . )( . 00 1 10
0 12

5 7 8) ( )
.

×
=

−
V

Click here to return to the chapter.

Practice Exercise 6.5
From Appendix 11, the pKa values for H2CO3 are 6.352 and 10.329. The 
ladder diagram for H2CO3 is shown to the side. The predominate form 
at a pH of 7.00 is HCO3

–.

Click here to return to the chapter.

Practice Exercise 6.6
The ladder diagram in Figure 6.5 indicates that the reaction between ace‑
tic acid and p‑nitrophenolate is favorable. Because p‑nitrophenolate is in 
excess, we assume that the reaction of acetic acid to acetate is complete. At 
equilibrium essentially no acetic acid remains and there are 0.040 moles 
of acetate. Converting acetic acid to acetate consumes 0.040 moles of 
p‑nitrophenolate; thus

moles ‑nitrophenolate mop = − =0 090 0 040 0 050. . . ll

moles ‑nitrophenol molp = 0 040.

According to the ladder diagram for this system, the pH is 7.15 when 
there are equal concentrations of p‑nitrophenol and p‑nitrophenolate. Be‑
cause we have slightly more p‑nitrophenolate than we have p‑nitrophenol, 
the pH is slightly greater than 7.15.

Click here to return to the chapter.

Practice Exercise 6.7
As Hg2Cl2 dissolves, two Cl– are produced for each ion of Hg2

2+. If we 
assume that x is the change in the molar concentration of Hg2

2+, then the 
change in the molar concentration of Cl– is 2x. The following table helps 
us keep track of our solution to this problem.

Concentrations Hg2Cl2(s)  Hg2
2+ (aq) + 2Cl– (aq)

Initial solid 0 0
Change solid +x +2x

Equilibrium solid x 2x

Substituting the equilibrium concentrations into the Ksp expression for 
Hg2Cl2 gives

pH

pKa1 = 6.352

H2CO3

pKa2 = 10.329

HCO3

CO3

--

2–
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K x x xsp Hg Cl= = = = ×+ − −[ ][ ] ( )( ) .2
2 2 2 3 182 4 1 2 10

x = × −6 69 10 7.
Substituting x back into the equilibrium expressions for Hg2

2+ and Cl– 
gives their concentrations as

[ ] . [ ] .Hg M Cl M2
2 7 66 7 10 2 1 3 10+ − − −= = × = = ×x x

The molar solubility is equal to [Hg2
2+], or 6.7 × 10–7 mol/L.

Click here to return to the chapter.

Practice Exercise 6.8
We begin by setting up a table to help us keep track of the concentrations 
of Hg2

2+ and Cl– as this system moves toward and reaches equilibrium.

Concentrations Hg2Cl2(s)  Hg2
2+ (aq) + 2Cl– (aq)

Initial solid 0 0.10
Change solid +x +2x

Equilibrium solid x 0.10 + 2x

Substituting the equilibrium concentrations into the Ksp expression for 
Hg2Cl2 leaves us with a difficult to solve cubic equation.

K x x xsp Hg Cl= = = + ++ −[ ][ ] ( )( . ) . .2
2 2 2 3 20 10 4 0 40 0 100x

Let’s make an assumption to simplify this problem. Because we expect the 
value of x to be small, let’s assume that

[ ] . .Cl M− = + ≈0 10 0 10x
This simplifies our problems to

K x xsp Hg Cl= = = = ×+ − −[ ][ ] ( )( . ) . .2
2 2 20 10 0 010 1 2 10 118

which gives the value of x as

x = × −1 2 10 16. M
The difference between the actual concentration of Cl–, which is 
(0.10 + x) M, and our assumption that it is 0.10 M introduces an error of 
1.2 × 10–14 %. This is a negligible error. The molar solubility of Hg2Cl2 
is the same as the concentration of Hg2

2+, or 1.2 × 10–16 M. As expected, 
the molar solubility in 0.10 M NaCl is less than 6.7 × 10–7 mol/L, which 
is its solubility in water (see solution to Practice Exercise 6.7). 

Click here to return to the chapter.
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Practice Exercise 6.9
To help us in determining what ions are in solution, let’s write down all 
the reaction leading to the preparation of the solutions and the equilibria 
within the solutions. These reactions are the dissolution of two soluble 
salts

KH PO K H PO2 24 4( ) ( ) ( )s aq aq→ ++ −

Na HPO Na HPO2 4 4
22( ) ( ) ( )s aq aq→ ++ −

and the acid–base dissociation reactions for H2PO4
–, HPO4

2–, and 
H2O.

H PO H O H O HPO2 2 34 4
2− + −+ +( ) ( ) ( ) ( )aq l aq aq

H PO H O OH H PO2 2 3 44
− −+ +( ) ( ) ( ) ( )aq l aq aq

HPO H O H O PO2 34
2

4
3− + −+ +( ) ( ) ( ) ( )aq l aq aq

2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+

Note that we did not include the base dissociation reaction for HPO4
2–

because we already have accounted for its product, H2PO4
–, in another re‑

action. The mass balance equations for K+ and Na+ are straightforward

[ ] . [ ] .K M Na M+ += =0 10 0 10

but the mass balance equation for the phosphate takes a little bit of 
thought. Both H2PO4

– andHPO4
2– produce the same ions in solution. 

We can, therefore, imagine that the solution initially contains 0.15 M 
KH2PO4, which gives the following mass balance equation.

0.15 M H PO H PO HPO PO3 4 2= + + +− − −[ ] [ ] [ ] [ ]4 4
2

4
3

The charge balance equation is

[ ] [ ] [ ]

[ ] [ ] [

H O K Na

H PO HPO PO
3

2

+ + +

− −

+ + =

+ × + ×4 4
22 3 44

3− −+] [ ]OH

Click here to return to the chapter.

Practice Exercise 6.10
In determining the pH of 0.050 M NH3, we need to consider two equi‑
librium reactions—the base dissociation reaction for NH3

NH H O OH NH23 4( ) ( ) ( ) ( )aq l aq aq+ +− +


and water’s dissociation reaction.

2H O H O OH2 3( ) ( ) ( )l aq aq

+ −+
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These two reactions contain four species whose concentrations we need to 
consider: NH3, NH4

+, H3O+, and OH–. We need four equations to solve 
the problem—these equations are the Kb equation for NH3

K b

OH NH
NH

= = ×
− +

−[ ][ ]
[ ]

.4

3

51 75 10

the Kw equation for H2O

K w 3H O OH= = ×+ − −[ ][ ] .1 00 10 14

a mass balance on ammonia

CNH M NH NH
3

0 050 3 4= = + +. [ ] [ ]

and a charge balance equation

[ ] [ ] [ ]H O NH OH3
+ + −+ =4

To solve this problem, we will make two assumptions. Because NH3 is a 
base, our first assumption is

[ ] [ ]OH H O3
− +>>

which simplifies the charge balance equation to

[ ] [ ]NH OH4
+ −=

Because NH3 is a weak base, our second assumption is

[ ] [ ]NH NH3 4>> +

which simplifies the mass balance equation to

CNH M NH
3

0 050 3= =. [ ]

Substituting the simplified charge balance equation and mass balance 
equation into the Kb equation leave us with

K
C Cb

NH NH

OH OH OH

3 3

= = = ×
− − −

−[ ][ ] [ ]
.

2
51 75 10

[ ] ( . )( . ) .OH b NH
− − −= = × = ×K C

3
1 75 10 0 050 9 35 105 4

Before accepting this answer, we must verify our two assumptions. The 
first assumption is that the concentration of OH– is significantly greater 
than the concentration of H3O+. Using Kw, we find that

[ ]
[ ]

.
.

.H O
OH3

w+
−

−

−
−= =

×
×

= ×
K 1 00 10

9 35 10
1 07 10

14

4
111
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Clearly this assumption is acceptable. Our second assumption is that the 
concentration of NH3 is scientifically greater than the concentration of 
NH4

+. Using our simplified charge balance equation, we find that

[ ] [ ] .NH OH4
49 35 10+ − −= = ×

Because the concentration of NH4
+ is 1.9% of CNH3, our second as‑

sumption also is reasonable. Given that [H3O+] is 1.07 × 10–11, the pH 
is 10.97.

Click here to return to the chapter.

Practice Exercise 6.11
In solving for the pH of 0.10 M alanine, we made the following three 
assumptions.

Assumption One: HL H L L2[ ] [ ] [ ]>> ++ −

Assumption Two: a1 w a1 a2 HLK K K K C<<

Assumption Three: a1 HLK C<<

The second and third assumptions are easy to check. The value for Ka1 
(4.487 × 10–3) is 0.45% of CHL (0.10), and Ka1 × Kw (4.487 × 10–17) is 
0.074% of Ka1 × Ka2 × CHL (6.093 × 10–14). Each assumption introduces 
an error of less than ±5%.

To test the first assumption, we need to calculate the concentrations of 
H2L+ and L–, which we accomplish using the equations for Ka1 and Ka2.

[ ]
[ ][ ] ( . )( . )

.
H L

H O HL
2

3

a1

+
+ −

= =
×

K
7 807 10 0 10

4 48

7

77 10
1 74 10

3
5

×
= ×

−
−.

[ ]
[ ]

[ ]
( . )( . )

.
L

HL
H O

a2

3

−
+

−

= =
×K 1 358 10 0 10

7 807

10

××
= ×

−
−

10
1 74 10

7
5.

Because these concentrations are less than ±5% of CHL, the first assump‑
tion also is acceptable.

Click here to return to the chapter.

Practice Exercise 6.12
The acid dissociation constant for H2PO4

– is 6.32 × 10–8, or a pKa of 
7.199. Substituting the initial concentrations of H2PO4

– and HPO4
2– 

into equation 6.60 and solving gives the buffer’s pH as

pH
HPO
H PO2

= + = +
−

−
7 199 7 199

0 0504
2

4

. log
[ ]
[ ]

. log
.

00 10
6 898 6 90

.
. .= ≈
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Adding HCl converts a portion of HPO4
2– to H2PO4

– as a result of the 
following reaction

HPO H O H O H PO3 2 24
2

4
− + −+ +( ) ( ) ( ) ( )aq aq l aq

Because this reaction’s equilibrium constant is so large (it is 1.59 × 107), 
we may treat the reaction as if it goes to completion. The new concentra‑
tions of H2PO4

– and HPO4
2– are

C
VH PO

2

total
2

mol H PO mol HCl

M

4

4

0 10 0

− =
+

=

−

( . )( .. ) ( . )( . )
. .
10 0 20 5 0 10

0 10 5 0 10

3

3

L M L
L
+ ×
+ ×

−

− L
M= 0 105.

C
VHPO

total

mol HPO ‑mol HCl

M

4
2

4
2

0 05 0

− =

=

−

( . )( .. ) ( . )( . )
. .
10 0 20 5 0 10

0 10 5 0 10

3

3

L M L
L
− ×
+ ×

−

− L
M= 0 0381.

Substituting these concentrations into equation 6.60 gives a pH of

pH
HPO
H PO2

= + = +
−

−
7 199 7 199

0 0384
2

4

. log
[ ]
[ ]

. log
. 11

0 105
6 759 6 76

.
. .= ≈

As we expect, adding HCl decreases the buffer’s pH by a small amount, 
dropping from 6.90 to 6.76.

Click here to return to the chapter.

Practice Exercise 6.13
We begin by calculating the solution’s ionic strength. Because NaCl is a 1:1 
ionic salt, the ionic strength is the same as the concentration of NaCl; thus 
m = 0.10 M. This assumes, of course, that we can ignore the contributions 
of Hg2

2+ and Cl– from the solubility of Hg2Cl2.

Next we use equation 6.63 to calculate the activity coefficients for Hg2
2+ 

and Cl–.

log
. ( ) .

. . .
γ

Hg2
2

0 51 2 0 10

1 3 3 0 40 0 10

2

+ =
− × + ×

+ × ×
=−00 455

0 351
2
2

.

.γ
Hg + =

log
. ( ) .

. . .
.γ

Cl−
=
− × − ×

+ × ×
=−

0 51 1 0 10

1 3 3 0 3 0 10
0 1

2

22

0 75γ
Cl−
= .

Defining the equilibrium concentrations of Hg2
2+ and Cl– in terms of 

the variable x
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Concentrations Hg2Cl2(s)  Hg2
2+ (aq) + 2Cl– (aq)

Initial solid 0 0.10
Change solid +x +2x

Equilibrium solid x 0.10 + 2x

and substituting into the thermodynamic solubility product for Hg2Cl2, 
leave us with

K a asp Hg Cl Hg Cl
Hg Cl= = =+ − + −

+ −

2
2

2
2

2
2
2 2 2 1γ γ[ ] [ ] .22 10 18× −

1 2 10 0 351 0 75 0 1018 2 2. ( . )( )( . ) ( . )× = +− x x
Because the value of x is likely to be small, let’s simplify this equation to

1 2 10 0 351 0 75 0 1018 2 2. ( . )( )( . ) ( . )× =− x
Solving for x gives its value as 6.1 × 10–16. Because x is the concentration 
of Hg2

2+ and 2x is the concentration of Cl–, our decision to ignore their 
contributions to the ionic strength is reasonable. The molar solubility of  
Hg2Cl2 in 0.10 M NaCl is 6.1 × 10–16 mol/L. In Practice Exercise 6.8, 
where we ignored ionic strength, we determined that the molar solubility 
of  Hg2Cl2 is 1.2 × 10–16 mol/L, a result that is 5× smaller than the its 
actual value.

Click here to return to the chapter.

Practice Exercise 6.14
To solve this problem, let’s set up the following spreadsheet

A B
1 pI = 3

2 [I‑] = = 10^–b1
3 [Ag+] = = 8.3e–17/b2
4 [Ag(NH3)2+] = = b2 – b3
5 [NH3] = = (b4/(b3*1.7e7))^0.5
6 [NH4+] = = 0.10 –  b5‑2*b4
7 [OH‑] = = 1.75e–5*b5/b6
8 [H3O+] = = 1.00e–14/b7
9 error = b3 + b4 + b6 + b8 – b2 – b7

copying the contents of cells B1‑B9 into several additional columns. See 
our earlier treatment of this problem for the relevant equilibrium reac‑
tions and equilibrium constants.  The initial guess for pI in cell B1 gives 
the concentration of I– in cell B2. Cells B3–B8 calculate the remaining 
concentrations, using the Ksp to obtain [Ag+], using the mass balance on 
iodide and silver to obtain [Ag(NH3)2

+], using b2 to calculate [NH3], us‑
ing the mass balance on ammonia to find [NH4

+], using Kb to calculate 
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[OH–], and using Kw to calculate [H3O+]. The system’s charge balance 
equation provides a means for determining the calculation’s error.

[ ] [ ) ] [ ] [ ] [ ] [ ]Ag Ag(NH NH H O I OH3
+ + + + − −+ + + − − =3 2 4 00

The largest possible value for pI—corresponding to the smallest concen‑
tration of I– and the lowest possible solubility—occurs for a simple, satu‑
rated solution of AgI.  When [Ag+] = [I–], the concentration of iodide is

[ ] . .I Msp
− − −= = × = ×K 8 3 10 9 1 1017 9

corresponding to a pI of 8.04. Entering initial guesses for pI of 4, 5, 6, 7, 
and 8 shows that the error changes sign between a pI of 5 and 6. Con‑
tinuing in this way to narrow down the range for pI, we find that the 
error function is closest to zero at a pI of 5.42. The concentration of I– at 
equilibrium, and the molar solubility of AgI, is 3.8 × 10–6 mol/L, which 
agrees with our earlier solution to this problem.

Click here to return to the chapter

Practice Exercise 6.15
To solve this problem, let’s use the following function 

> eval = function(pI){
+ I =10^–pI
+ Ag = 8.3e–17/I
+ AgNH3 = Ag – I
+ NH3 =(AgNH3/(1.7e7*Ag))^0.5
+ NH4 =0.10‑NH3 – 2*AgNH3
+ OH =1.75e–5*NH3/NH4
+ H3O =1e–14/OH
+ error = Ag + AgNH3 + NH4 + H3O – OH – I
+ output = data.frame(pI, error)
+ print(output)
+ }

The function accepts an initial guess for pI and calculates the concentra‑
tions of species in solution using the definition of pI to calculate [I–], 
using the Ksp to obtain [Ag+], using the mass balance on iodide and silver 
to obtain [Ag(NH3)2

+], using b2 to calculate [NH3], using the mass bal‑
ance on ammonia to find [NH4

+], using Kb to calculate [OH–], and using 
Kw to calculate [H3O+]. The system’s charge balance equation provides a 
means for determining the calculation’s error.

[ ] [ ) ] [ ] [ ] [ ] [ ]Ag Ag(NH NH H O I OH3
+ + + + − −+ + + − − =3 2 4 00

The largest possible value for pI—corresponding to the smallest concen‑
tration of I– and the lowest possible solubility—occurs for a simple, satu‑
rated solution of AgI.  When [Ag+] = [I–], the concentration of iodide is
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[ ] . .I Msp
− − −= = × = ×K 8 3 10 9 1 1017 9

corresponding to a pI of 8.04. The following session shows the function 
in action.

> pI =c(4, 5, 6, 7, 8)
> eval(pI)
  pI       error
1  4 ‑2.56235615
2  5 ‑0.16620930
3  6  0.07337101
4  7  0.09734824
5  8  0.09989073
> pI =c(5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0)
> eval(pI)
    pI       error
1  5.1 ‑0.11144658
2  5.2 ‑0.06794105
3  5.3 ‑0.03336475
4  5.4 ‑0.00568116
5  5.5  0.01571549
6  5.6  0.03308929
7  5.7  0.04685937
8  5.8  0.05779214
9  5.9  0.06647475
10 6.0  0.07337101
> pI =c(5.40, 5.41, 5.42, 5.43, 5.44, 5.45, 5.46, 5.47, 5.48, 5.49, 5.50)
> eval(pI)
     pI         error
1  5.40 ‑0.0056811605
2  5.41 ‑0.0030715484
3  5.42  0.0002310369
4  5.43 ‑0.0005134898
5  5.44  0.0028281878
6  5.45  0.0052370980
7  5.46  0.0074758181
8  5.47  0.0096260370
9  5.48  0.0117105498
10 5.49  0.0137387291
11 5.50  0.0157154889

The error function is closest to zero at a pI of 5.42. The concentration of 
I– at equilibrium, and the molar solubility of AgI, is 3.8 × 10–6 mol/L, 
which agrees with our earlier solution to this problem.

Click here to return to the chapter
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