
153

Chapter 5

Standardizing Analytical 
Methods

Chapter Overview
5A Analytical Standards
5B Calibrating the Signal (Stotal)
5C Determining the Sensitivity (kA)
5D Linear Regression and Calibration Curves
5E Compensating for the Reagent Blank (Sreag)
5F Using Excel and R for a Regression Analysis
5G Key Terms
5H Chapter Summary
5I Problems
5J Solutions to Practice Exercises

The American Chemical Society’s Committee on Environmental Improvement defines 
standardization as the process of determining the relationship between the signal and the 
amount of analyte in a sample.1 In Chapter 3 we defined this relationship as

S k n S S k C Stotal A A reag total A A ror= + = + eeag

where Stotal is the signal, nA is the moles of analyte, CA is the analyte’s concentration, kA is the 
method’s sensitivity for the analyte, and Sreag is the contribution to Stotal from sources other 
than the sample. To standardize a method we must determine values for kA and Sreag. Strategies 
for accomplishing this are the subject of this chapter.

1 ACS Committee on Environmental Improvement “Guidelines for Data Acquisition and Data Quality Evaluation in 
Environmental Chemistry,” Anal. Chem. 1980, 52, 2242–2249.



154 Analytical Chemistry 2.0

5A Analytical Standards
To standardize an analytical method we use standards containing known 
amounts of analyte. The accuracy of a standardization, therefore, depends 
on the quality of the reagents and glassware used to prepare these standards. 
For example, in an acid–base titration the stoichiometry of the acid–base re-
action defines the relationship between the moles of analyte and the moles 
of titrant. In turn, the moles of titrant is the product of the titrant’s con-
centration and the volume of titrant needed to reach the equivalence point. 
The accuracy of a titrimetric analysis, therefore, can be no better than the 
accuracy to which we know the titrant’s concentration. 

5A.1 Primary and Secondary Standards

We divide analytical standards into two categories: primary standards and 
secondary standards. A primary standard is a reagent for which we can 
dispense an accurately known amount of analyte. For example, a 0.1250-g 
sample of K2Cr2O7 contains 4.249 × 10–4 moles of K2Cr2O7. If we place 
this sample in a 250-mL volumetric flask and dilute to volume, the con-
centration of the resulting solution is 1.700 × 10–3 M. A primary standard 
must have a known stoichiometry, a known purity (or assay), and it must 
be stable during long-term storage. Because of the difficulty in establishing 
the degree of hydration, even after drying, a hydrated reagent usually is not 
a primary standard. 

Reagents that do not meet these criteria are secondary standards. 
The concentration of a secondary standard must be determined relative 
to a primary standard. Lists of acceptable primary standards are available.2 
Appendix 8 provides examples of some common primary standards.

5A.2 Other Reagents

Preparing a standard often requires additional reagents that are not pri-
mary standards or secondary standards. Preparing a standard solution, for 
example, requires a suitable solvent, and additional reagents may be need 
to adjust the standard’s matrix. These solvents and reagents are potential 
sources of additional analyte, which, if not accounted for, produce a deter-
minate error in the standardization. If available, reagent grade chemicals 
conforming to standards set by the American Chemical Society should be 
used.3 The label on the bottle of a reagent grade chemical (Figure 5.1) lists 
either the limits for specific impurities, or provides an assay for the impuri-
ties. We can improve the quality of a reagent grade chemical by purifying it, 
or by conducting a more accurate assay. As discussed later in the chapter, we 

2 (a) Smith, B. W.; Parsons, M. L. J. Chem. Educ. 1973, 50, 679–681; (b) Moody, J. R.; Green-
burg, P. R.; Pratt, K. W.; Rains, T. C. Anal. Chem. 1988, 60, 1203A–1218A.

3 Committee on Analytical Reagents, Reagent Chemicals, 8th ed., American Chemical Society: 
Washington, D. C., 1993.

See Chapter 9 for a thorough discussion of 
titrimetric methods of analysis.

The base NaOH is an example of a sec-
ondary standard. Commercially avail-
able NaOH contains impurities of NaCl, 
Na2CO3, and Na2SO4, and readily 
absorbs H2O from the atmosphere. To 
determine the concentration of NaOH in 
a solution, it is titrated against a primary 
standard weak acid, such as potassium hy-
drogen phthalate, KHC8H4O4.
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can correct for contributions to Stotal from reagents used in an analysis by 
including an appropriate blank determination in the analytical procedure.

5A.3 Preparing Standard Solutions

It is often necessary to prepare a series of standards, each with a different 
concentration of analyte. We can prepare these standards in two ways. If the 
range of concentrations is limited to one or two orders of magnitude, then 
each solution is best prepared by transferring a known mass or volume of 
the pure standard to a volumetric flask and diluting to volume. 

When working with larger ranges of concentration, particularly those 
extending over more than three orders of magnitude, standards are best pre-
pared by a serial dilution from a single stock solution. In a serial dilution 
we prepare the most concentrated standard and then dilute a portion of it 
to prepare the next most concentrated standard. Next, we dilute a portion 
of the second standard to prepare a third standard, continuing this process 
until all we have prepared all of our standards. Serial dilutions must be pre-
pared with extra care because an error in preparing one standard is passed 
on to all succeeding standards.

Figure 5.1 Examples of typical packaging labels for reagent grade chemicals. Label 
(a) provides the manufacturer’s assay for the reagent, NaBr. Note that potassium 
is flagged with an asterisk (*) because its assay exceeds the limits established by 
the American Chemical Society (ACS). Label (b) does not provide an assay for 
impurities, but indicates that the reagent meets ACS specifications. An assay for 
the reagent, NaHCO3 is provided.

(a) (b)
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5B Calibrating the Signal (Stotal)
The accuracy of our determination of kA and Sreag depends on how accurately 
we can measure the signal, Stotal. We measure signals using equipment, such 
as glassware and balances, and instrumentation, such as spectrophotom-
eters and pH meters. To minimize determinate errors affecting the signal, 
we first calibrate our equipment and instrumentation. We accomplish the 
calibration by measuring Stotal for a standard with a known response of Sstd, 
adjusting Stotal until 

S Stotal std=

Here are two examples of how we calibrate signals. Other examples are 
provided in later chapters focusing on specific analytical methods.

When the signal is a measurement of mass, we determine Stotal using 
an analytical balance. To calibrate the balance’s signal we use a reference 
weight that meets standards established by a governing agency, such as the 
National Institute for Standards and Technology or the American Society 
for Testing and Materials. An electronic balance often includes an internal 
calibration weight for routine calibrations, as well as programs for calibrat-
ing with external weights. In either case, the balance automatically adjusts 
Stotal to match Sstd.

We also must calibrate our instruments. For example, we can evaluate 
a spectrophotometer’s accuracy by measuring the absorbance of a carefully 
prepared solution of 60.06 mg/L K2Cr2O7 in 0.0050 M H2SO4, using 
0.0050 M H2SO4 as a reagent blank.4 An absorbance of 0.640 ± 0.010 
absorbance units at a wavelength of 350.0 nm indicates that the spectrom-
eter’s signal is properly calibrated. Be sure to read and carefully follow the 
calibration instructions provided with any instrument you use.

5C Determining the Sensitivity (kA)
To standardize an analytical method we also must determine the value of 
kA in equation 5.1 or equation 5.2.

S k n Stotal A A reag= + 5.1

S k C Stotal A A reag= + 5.2

In principle, it should be possible to derive the value of kA for any analyti-
cal method by considering the chemical and physical processes generating 
the signal. Unfortunately, such calculations are not feasible when we lack 
a sufficiently developed theoretical model of the physical processes, or are 
not useful because of nonideal chemical behavior. In such situations we 
must determine the value of kA by analyzing one or more standard solutions, 
each containing a known amount of analyte. In this section we consider 

4 Ebel, S. Fresenius J. Anal. Chem. 1992, 342, 769.

See Section 2D.1 to review how an elec-
tronic balance works. Calibrating a balance 
is important, but it does not eliminate all 
sources of determinate error in measuring 
mass. See Appendix 9 for a discussion of 
correcting for the buoyancy of air.
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several approaches for determining the value of kA. For simplicity we will 
assume that Sreag has been accounted for by a proper reagent blank, allow-
ing us to replace Stotal in equation 5.1 and equation 5.2 with the analyte’s 
signal, SA.

S k nA A A= 5.3

S k CA A A= 5.4

5C.1 Single-Point versus Multiple-Point Standardizations

The simplest way to determine the value of kA in equation 5.4 is by a sin-
gle-point standardization in which we measure the signal for a standard, 
Sstd, containing a known concentration of analyte, Cstd. Substituting these 
values into equation 5.4

k
S
CA

std

std

= 5.5

gives the value for kA. Having determined the value for kA, we can calculate 
the concentration of analyte in any sample by measuring its signal, Ssamp, 
and calculating CA using equation 5.6.

C
S

kA
samp

A

= 5.6

A single-point standardization is the least desirable method for stan-
dardizing a method. There are at least two reasons for this. First, any error 
in our determination of kA carries over into our calculation of CA. Second, 
our experimental value for kA is for a single concentration of analyte. Ex-
tending this value of kA to other concentrations of analyte requires us to 
assume a linear relationship between the signal and the analyte’s concentra-
tion, an assumption that often is not true.5 Figure 5.2 shows how assum-
ing a constant value of kA may lead to a determinate error in the analyte’s 
concentration. Despite these limitations, single-point standardizations find 
routine use when the expected range for the analyte’s concentrations is 
small. Under these conditions it is often safe to assume that kA is constant 
(although you should verify this assumption experimentally). This is the 
case, for example, in clinical labs where many automated analyzers use only 
a single standard.

The preferred approach to standardizing a method is to prepare a se-
ries of standards, each containing the analyte at a different concentration.  
Standards are chosen such that they bracket the expected range for the ana-
lyte’s concentration. A multiple-point standardization should include 
at least three standards, although more are preferable. A plot of Sstd versus 

5 Cardone, M. J.; Palmero, P. J.; Sybrandt, L. B. Anal. Chem. 1980, 52, 1187–1191.

Equation 5.3 and equation 5.4 are essen-
tially identical, differing only in whether 
we choose to express the amount of ana-
lyte in moles or as a concentration. For the 
remainder of this chapter we will limit our 
treatment to equation 5.4. You can extend 
this treatment to equation 5.3 by replac-
ing CA with nA.

Linear regression, which also is known as 
the method of least squares, is one such al-
gorithm. Its use is covered in Section 5D.
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Cstd is known as a calibration curve. The exact standardization, or calibra-
tion relationship is determined by an appropriate curve-fitting algorithm. 

There are at least two advantages to a multiple-point standardization. 
First, although a determinate error in one standard introduces a determinate 
error into the analysis, its effect is minimized by the remaining standards. 
Second, by measuring the signal for several concentrations of analyte we 
no longer must assume that the value of kA is independent of the analyte’s 
concentration. Constructing a calibration curve similar to the “actual rela-
tionship” in Figure 5.2, is possible. 

5C.2 External Standards

The most common method of standardization uses one or more external 
standards, each containing a known concentration of analyte. We call 
them “external” because we prepare and analyze the standards separate from 
the samples.

Single external Standard

A quantitative determination using a single external standard was described 
at the beginning of this section, with kA given by equation 5.5. After de-
termining the value of kA, the concentration of analyte, CA, is calculated 
using equation 5.6.

Example 5.1

A spectrophotometric method for the quantitative analysis of Pb2+ in 
blood yields an Sstd of 0.474 for a single standard whose concentration of 
lead is 1.75 ppb What is the concentration of Pb2+ in a sample of blood 
for which Ssamp is 0.361?

Figure 5.2 Example showing how a single-point 
standardization leads to a determinate error in an 
analyte’s reported concentration if we incorrectly 
assume that the value of kA is constant. (CA)reportedCstd

Sstd

Ssamp

(CA)actual

actual relationship

assumed relationship

Appending the adjective “external” to the 
noun “standard” might strike you as odd 
at this point, as it seems reasonable to as-
sume that standards and samples must 
be analyzed separately. As you will soon 
learn, however, we can add standards to 
our samples and analyze them simultane-
ously. 
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Solution
Equation 5.5 allows us to calculate the value of kA for this method using 
the data for the standard.

  
k

S
CA

std

std

-1

ppb
ppb= = =

0 474
1 75

0 2709
.

.
.

Having determined the value of kA, the concentration of Pb2+ in the sam-
ple of blood is calculated using equation 5.6.

C
S

kA
samp

A
-1ppb

ppb= = =
0 361

0 2709
1 33

.
.

.

Multiple external StandardS

Figure 5.3 shows a typical multiple-point external standardization. The 
volumetric flask on the left is a reagent blank and the remaining volu-
metric flasks contain increasing concentrations of Cu2+. Shown below the 
volumetric flasks is the resulting calibration curve. Because this is the most 
common method of standardization the resulting relationship is called a 
normal calibration curve. 

When a calibration curve is a straight-line, as it is in Figure 5.3, the 
slope of the line gives the value of kA. This is the most desirable situation 
since the method’s sensitivity remains constant throughout the analyte’s 
concentration range. When the calibration curve is not a straight-line, the 

0 0.0020 0.0040 0.0060 0.0080
0

0.05

0.10

0.15

0.20

0.25

Sstd

Cstd (M)

Figure 5.3 Shown at the top is a reagent 
blank (far left) and a set of five exter-
nal standards for Cu2+ with concen-
trations increasing from left to right. 
Shown below the external standards is 
the resulting normal calibration curve. 
The absorbance of each standard, Sstd, 
is shown by the filled circles.
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method’s sensitivity is a function of the analyte’s concentration. In Figure 
5.2, for example, the value of kA is greatest when the analyte’s concentration 
is small and decreases continuously for higher concentrations of analyte. 
The value of kA at any point along the calibration curve in Figure 5.2 is given 
by the slope at that point. In either case, the calibration curve provides a 
means for relating Ssamp to the analyte’s concentration.

Example 5.2

A second spectrophotometric method for the quantitative analysis of Pb2+ 
in blood has a normal calibration curve for which

S Cstd
-1

stdppb=( )× +0 296 0 003. .

What is the concentration of Pb2+ in a sample of blood if Ssamp is 0.397?

Solution
To determine the concentration of Pb2+ in the sample of blood we replace 
Sstd in the calibration equation with Ssamp and solve for CA.

C
S

A
samp

-1ppb
=

−
=

−0 003

0 296
0 397 0 003
0 296

.

.
. .
. pppb

ppb
-1
=1 33.

It is worth noting that the calibration equation in this problem includes 
an extra term that does not appear in equation 5.6. Ideally we expect 
the calibration curve to have a signal of zero when CA is zero. This is the 
purpose of using a reagent blank to correct the measured signal. The extra 
term of +0.003 in our calibration equation results from the uncertainty in 
measuring the signal for the reagent blank and the standards.

An external standardization allows us to analyze a series of samples 
using a single calibration curve. This is an important advantage when we 
have many samples to analyze. Not surprisingly, many of the most common 
quantitative analytical methods use an external standardization. 

There is a serious limitation, however, to an external standardization. 
When we determine the value of kA using equation 5.5, the analyte is pres-

Practice Exercise 5.1
Figure 5.3 shows a normal calibration curve for the quantitative analysis 
of Cu2+. The equation for the calibration curve is

Sstd = 29.59 M–1 × Cstd + 0.0015

What is the concentration of Cu2+ in a sample whose absorbance, Ssamp, 
is 0.114? Compare your answer to a one-point standardization where a 
standard of 3.16 × 10–3 M Cu2+ gives a signal of 0.0931.

Click here to review your answer to this exercise.

The one-point standardization in this ex-
ercise uses data from the third volumetric 
flask in Figure 5.3.
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ent in the external standard’s matrix, which usually is a much simpler ma-
trix than that of our samples. When using an external standardization we 
assume that the matrix does not affect the value of kA. If this is not true, 
then we introduce a proportional determinate error into our analysis. This 
is not the case in Figure 5.4, for instance, where we show calibration curves 
for the analyte in the sample’s matrix and in the standard’s matrix. In this 
example, a calibration curve using external standards results in a negative 
determinate error. If we expect that matrix effects are important, then we 
try to match the standard’s matrix to that of the sample. This is known as 
matrix matching. If we are unsure of the sample’s matrix, then we must 
show that matrix effects are negligible, or use an alternative method of stan-
dardization. Both approaches are discussed in the following section.

5C.3 Standard Additions

We can avoid the complication of matching the matrix of the standards to 
the matrix of the sample by conducting the standardization in the sample. 
This is known as the method of standard additions. 

Single Standard addition

The simplest version of a standard addition is shown in Figure 5.5. First we 
add a portion of the sample, Vo, to a volumetric flask, dilute it to volume, 
Vf, and measure its signal, Ssamp. Next, we add a second identical portion 
of sample to an equivalent volumetric flask along with a spike, Vstd, of an 
external standard whose concentration is Cstd. After diluting the spiked 
sample to the same final volume, we measure its signal, Sspike. The following 
two equations relate Ssamp and Sspike to the concentration of analyte, CA, in 
the original sample.

The matrix for the external standards in 
Figure 5.3, for example, is dilute ammonia, 
which is added because the Cu(NH3)4

2+ 

complex absorbs more strongly than 
Cu2+. If we fail to add the same amount 
of ammonia to our samples, then we will 
introduce a proportional determinate er-
ror into our analysis.

(CA)reported

Ssamp

(CA)actual

standard’s
matrix

sample’s
matrix

Figure 5.4 Calibration curves for an analyte in the 
standard’s matrix and in the sample’s matrix. If the 
matrix affects the value of kA, as is the case here, then 
we introduce a determinate error into our analysis if 
we use a normal calibration curve.
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S k C
V
Vsamp A A

o

f

= 5.7

S k C
V
V

C
V
V

spike A A
f

o
std

f

std= +f p 5.8

As long as Vstd is small relative to Vo, the effect of the standard’s matrix on 
the sample’s matrix is insignificant. Under these conditions the value of kA 
is the same in equation 5.7 and equation 5.8. Solving both equations for 
kA and equating gives

S

C
V
V

S

C
V
V

C
V
V

samp

A
o

f

spike

A
o

f
std

std

f

=
+

5.9

which we can solve for the concentration of analyte, CA, in the original 
sample.

Example 5.3

A third spectrophotometric method for the quantitative analysis of Pb2+ in 
blood yields an Ssamp of 0.193 when a 1.00 mL sample of blood is diluted 
to 5.00 mL. A second 1.00 mL sample of blood is spiked with 1.00 mL of 
a 1560-ppb Pb2+ external standard and diluted to 5.00 mL, yielding an 

add Vo of CA add Vstd of Cstd

dilute to Vf

C
V
VA

o

f

× C
V
V

C
V
VA

o

f
std

std

f

× + ×Concentration
of Analyte

Figure 5.5 Illustration showing the method of stan-
dard additions. The volumetric flask on the left con-
tains a portion of the sample, Vo, and the volumetric 
flask on the right contains an identical portion of the 
sample and a spike, Vstd, of a standard solution of the 
analyte. Both flasks are diluted to the same final vol-
ume, Vf. The concentration of analyte in each flask is 
shown at the bottom of the figure where CA is the ana-
lyte’s concentration in the original sample and Cstd is 
the concentration of analyte in the external standard.

The ratios Vo/Vf and Vstd/Vf account for 
the dilution of the sample and the stan-
dard, respectively.
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Sspike of 0.419. What is the concentration of Pb2+ in the original sample 
of blood?

Solution
We begin by making appropriate substitutions into equation 5.9 and solv-
ing for CA. Note that all volumes must be in the same units; thus, we first 
covert Vstd from 1.00 mL to 1.00 × 10–3 mL.

0 193
1 00
5 00

0 419
1 0

.

.

.

.
.C CA A

mL
mL

=
00

5 00
1560 1 00 10 3mL

mL
ppb m

.
.

+
× − LL

mL5 00.

0 193
0 200

0 419
0 200 0 3120

.
.

.
. .C CA A ppb

=
+

0.0386CA + 0.0602 ppb = 0.0838CA

0.0452CA = 0.0602 ppb

CA = 1.33 ppb

The concentration of Pb2+ in the original sample of blood is 1.33 ppb.

It also is possible to make a standard addition directly to the sample, 
measuring the signal both before and after the spike (Figure 5.6). In this 
case the final volume after the standard addition is Vo + Vstd and equation 
5.7, equation 5.8, and equation 5.9 become

add Vstd of Cstd

Concentration
of Analyte

Vo Vo

CA
C

V
V V

C
V

V VA
o

o std
std

std

o std+
+

+

Figure 5.6 Illustration showing an alternative form of the method of standard ad-
ditions. In this case we add a spike of the external standard directly to the sample 
without any further adjust in the volume.
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S k Csamp A A=

S k C
V V

V
C

V V
V

spike A A
o std

o
std

o std

std=
+

+
+

f p 5.10

S

C

S

C
V

V V
C

V
V V

samp

A

spike

A
o

o std
std

std

o std

=

+
+

+
5.11

Example 5.4

A fourth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood yields an Ssamp of 0.712 for a 5.00 mL sample of blood. After spik-
ing the blood sample with 5.00 mL of a 1560-ppb Pb2+ external standard, 
an Sspike of 1.546 is measured. What is the concentration of Pb2+ in the 
original sample of blood.

Solution
To determine the concentration of Pb2+ in the original sample of blood, we 
make appropriate substitutions into equation 5.11 and solve for CA.

0 712 1 546
5 00
5 005

1

. .
.
.

C
CA

A

mL
mL

=

+ 5560 5 00 10
5 005

3

ppb mL
mL

.
.
× −

0 712 1 546
0 9990 1 558

. .
. .C CA A ppb

=
+

0.7113CA + 1.109 ppb = 1.546CA

 CA = 1.33 ppb

The concentration of Pb2+ in the original sample of blood is 1.33 ppb.

Multiple Standard additionS

We can adapt the single-point standard addition into a multiple-point 
standard addition by preparing a series of samples containing increasing 
amounts of the external standard. Figure 5.7 shows two ways to plot a 
standard addition calibration curve based on equation 5.8. In Figure 5.7a 
we plot Sspike against the volume of the spikes, Vstd. If kA is constant, then 
the calibration curve is a straight-line. It is easy to show that the x-intercept 
is  equivalent to –CAVo/Cstd.

Vo + Vstd = 5.00 mL + 5.00×10–3 mL 

                 = 5.005 mL
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Example 5.5

Beginning with equation 5.8 show that the equations in Figure 5.7a for 
the slope, the y-intercept, and the x-intercept are correct.

Solution
We begin by rewriting equation 5.8 as

S
k C V

V
k C

V
Vspike

A A o

f

A std

f
std= + ×

which is in the form of the equation for a straight-line

Y = y-intercept + slope × X

-4.00 -2.00 0 2.00 4.00 6.00 8.00 10.00 12.00
0

0.10

0.20

0.30

0.40

0.50

0.60

Sspike

Cstd
Vstd

Vf
×

slope = kA

y-intercept = 
kACAVo

Vf

x-intercept = 
-CAVo

Vf

0

0.10

0.20

0.30

0.40

0.50

0.60

Sspike

-2.00 0 2.00 4.00 6.00

Cstd

Vstd

slope =
kACstd

Vf

x-intercept = 
-CAVo

y-intercept = 
kACAVo

Vf

(a)

(b)

(mL)

(mg/L)

Figure 5.7 Shown at the top is a set of 
six standard additions for the determi-
nation of Mn2+. The flask on the left 
is a 25.00 mL sample diluted to 50.00 
mL. The remaining flasks contain 25.00 
mL of sample and, from left to right, 
1.00, 2.00, 3.00, 4.00, and 5.00 mL 
of an external standard of 100.6 mg/L 
Mn2+. Shown below are two ways to 
plot the standard additions calibration 
curve. The absorbance for each stan-
dard addition, Sspike, is shown by the 
filled circles.
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where Y is Sspike and X is Vstd. The slope of the line, therefore, is kACstd/Vf 
and the y-intercept is kACAVo/Vf. The x-intercept is the value of X when 
Y is zero, or

0= + ×
k C V

V
k C
V

xA A o

f

A std

f

-intercept

x

k C V
V

k C
V

C V
C

-intercept
A A o

f

A std

f

A o

std

=− =−

Practice Exercise 5.2
Beginning with equation 5.8 show that the equations in Figure 5.7b for 
the slope, the y-intercept, and the x-intercept are correct.

Click here to review your answer to this exercise.

Because we know the volume of the original sample, Vo, and the con-
centration of the external standard, Cstd, we can calculate the analyte’s con-
centrations from the x-intercept of a multiple-point standard additions. 

Example 5.6

A fifth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood uses a multiple-point standard addition based on equation 5.8. 
The original blood sample has a volume of 1.00 mL and the standard used 
for spiking the sample has a concentration of 1560 ppb Pb2+. All samples 
were diluted to 5.00 mL before measuring the signal. A calibration curve 
of Sspike versus Vstd has the following equation

Sspike = 0.266 + 312 mL–1 × Vstd

What is the concentration of Pb2+ in the original sample of blood.

Solution
To find the x-intercept we set Sspike equal to zero.

 0 = 0.266 + 312 mL–1 × Vstd

Solving for Vstd, we obtain a value of –8.526 × 10–4 mL for the x-intercept. 
Substituting the x-interecpt’s value into the equation from Figure 5.7a 

− × =− =−
×−8 526 10

1 00
1560

4.
.

mL
mL

pp
C V
C

CA o

std

A

bb

and solving for CA gives the concentration of Pb2+ in the blood sample 
as 1.33 ppb.
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Since we construct a standard additions calibration curve in the sample, 
we can not use the calibration equation for other samples. Each sample, 
therefore, requires its own standard additions calibration curve. This is a 
serious drawback if you have many samples. For example, suppose you need 
to analyze 10 samples using a three-point calibration curve. For a normal 
calibration curve you need to analyze only 13 solutions (three standards 
and ten samples). If you use the method of standard additions, however, 
you must analyze 30 solutions (each of the ten samples must be analyzed 
three times, once before spiking and after each of two spikes).

uSing a Standard addition to identify Matrix effectS

We can use the method of standard additions to validate an external stan-
dardization when matrix matching is not feasible. First, we prepare a nor-
mal calibration curve of Sstd versus Cstd and determine the value of kA from 
its slope. Next, we prepare a standard additions calibration curve using 
equation 5.8, plotting the data as shown in Figure 5.7b. The slope of this 
standard additions calibration curve provides an independent determina-
tion of kA. If there is no significant difference between the two values of 
kA, then we can ignore the difference between the sample’s matrix and that 
of the external standards. When the values of kA are significantly different, 
then using a normal calibration curve introduces a proportional determi-
nate error. 

5C.4 Internal Standards

To successfully use an external standardization or the method of standard 
additions, we must be able to treat identically all samples and standards. 
When this is not possible, the accuracy and precision of our standardiza-
tion may suffer. For example, if our analyte is in a volatile solvent, then its 
concentration increases when we lose solvent to evaporation. Suppose we 

Practice Exercise 5.3
Figure 5.7 shows a standard additions calibration curve for the quantita-
tive analysis of Mn2+. Each solution contains 25.00 mL of the original 
sample and either 0, 1.00, 2.00, 3.00, 4.00, or 5.00 mL of a 100.6 mg/L 
external standard of Mn2+. All standard addition samples were diluted to 
50.00 mL before reading the absorbance. The equation for the calibration 
curve in Figure 5.7a is

Sstd = 0.0854 × Vstd + 0.1478

What is the concentration of Mn2+ in this sample? Compare your answer 
to the data in Figure 5.7b, for which the calibration curve is

Sstd = 0.0425 × Cstd(Vstd/Vf) + 0.1478

Click here to review your answer to this exercise.
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have a sample and a standard with identical concentrations of analyte and 
identical signals. If both experience the same proportional loss of solvent 
then their respective concentrations of analyte and signals continue to be 
identical. In effect, we can ignore evaporation if the samples and standards 
experience an equivalent loss of solvent. If an identical standard and sample 
lose different amounts of solvent, however, then their respective concen-
trations and signals will no longer be equal. In this case a simple external 
standardization or standard addition is not possible.

We can still complete a standardization if we reference the analyte’s 
signal to a signal from another species that we add to all samples and stan-
dards. The species, which we call an internal standard, must be different 
than the analyte.

Because the analyte and the internal standard in any sample or standard 
receive the same treatment, the ratio of their signals is unaffected by any 
lack of reproducibility in the procedure. If a solution contains an analyte of 
concentration CA, and an internal standard of concentration, CIS, then the 
signals due to the analyte, SA, and the internal standard, SIS, are

S k CA A A=

S k CIS IS IS=

where kA and kIS are the sensitivities for the analyte and internal standard. 
Taking the ratio of the two signals gives the fundamental equation for an 
internal standardization.

S
S

k C
k C

K
C
C

A

IS

A A

IS IS

A

IS

= = × 5.12

Because K is a ratio of the analyte’s sensitivity and the internal standard’s 
sensitivity, it is not necessary to independently determine values for either 
kA or kIS. 

Single internal Standard

In a single-point internal standardization, we prepare a single standard con-
taining the analyte and the internal standard, and use it to determine the 
value of K in equation 5.12.

K
C
C

S
S

A

IS

std IS

A

std

#= f fp p 5.13

Having standardized the method, the analyte’s concentration is given by

C
K
C

S
S

A
IS

IS

A

samp

#= f p



169Chapter 5 Standardizing Analytical Methods

Example 5.7

A sixth spectrophotometric method for the quantitative analysis of Pb2+ in 
blood uses Cu2+ as an internal standard. A standard containing 1.75 ppb 
Pb2+ and 2.25 ppb Cu2+ yields a ratio of (SA/SIS)std of 2.37. A sample of 
blood is spiked with the same concentration of Cu2+, giving a signal ratio, 
(SA/SIS)samp, of 1.80. Determine the concentration of Pb2+ in the sample 
of blood.

Solution
Equation 5.13 allows us to calculate the value of K using the data for the 
standard

K =
CA

CISf p
std

#
SIS

SAf p
std

=
1 . 75 ppb Pb2+

2 . 25 ppb Cu
# 2 . 37 = 3 . 05

ppb Pb2+

ppb Cu2+

The concentration of Pb2+, therefore, is

CA = K
CIS #

SIS

SAf p
samp

=

3 . 05
ppb Pb2+

ppb Cu2+

2 . 25 ppb Cu2+

# 1 . 80 = 1 . 33 ppb Cu2+

Multiple internal StandardS

A single-point internal standardization has the same limitations as a single-
point normal calibration. To construct an internal standard calibration 
curve we prepare a series of standards, each containing the same concen-
tration of internal standard and a different concentrations of analyte. Under 
these conditions a calibration curve of (SA/SIS)std versus CA is linear with 
a slope of K/CIS.   

Example 5.8

A seventh spectrophotometric method for the quantitative analysis of Pb2+ 

in blood gives a linear internal standards calibration curve for which

( . ) .
S
S

C2 11 0 006 ppb
IS

A

std

1
A#= --f p

What is the ppb Pb2+ in a sample of blood if (SA/SIS)samp is 2.80?

Solution
To determine the concentration of Pb2+ in the sample of blood we replace 
(SA/SIS)std in the calibration equation with (SA/SIS)samp and solve for CA.

Although the usual practice is to prepare 
the standards so that each contains an 
identical amount of the internal standard, 
this is not a requirement.
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CA = 2.11 ppb-1

SIS

SAf p
samp

+ 0 . 006
=

2 . 11 ppb-1

2 . 80+ 0 . 006
= 1 . 33 ppb

The concentration of Pb2+ in the sample of blood is 1.33 ppb.                    

In some circumstances it is not possible to prepare the standards so that 
each contains the same concentration of internal standard. This is the case, 
for example, when preparing samples by mass instead of volume. We can 
still prepare a calibration curve, however, by plotting (SA/SIS)std versus CA/
CIS, giving a linear calibration curve with a slope of K.

5D Linear Regression and Calibration Curves
In a single-point external standardization we determine the value of kA by 
measuring the signal for a single standard containing a known concentra-
tion of analyte. Using this value of kA and the signal for our sample, we 
then calculate the concentration of analyte in our sample (see Example 
5.1). With only a single determination of kA, a quantitative analysis using 
a single-point external standardization is straightforward.

A multiple-point standardization presents a more difficult problem. 
Consider the data in Table 5.1 for a multiple-point external standardiza-
tion. What is our best estimate of the relationship between Sstd and Cstd?  
It is tempting to treat this data as five separate single-point standardiza-
tions, determining kA for each standard, and reporting the mean value. 
Despite it simplicity, this is not an appropriate way to treat a multiple-point 
standardization.

So why is it inappropriate to calculate an average value for kA as done 
in Table 5.1? In a single-point standardization we assume that our reagent 
blank (the first row in Table 5.1) corrects for all constant sources of deter-
minate error. If this is not the case, then the value of kA from a single-point 
standardization has a determinate error. Table 5.2 demonstrates how an 

Table 5.1 Data for a Hypothetical Multiple-Point External 
Standardization

Cstd (arbitrary units) Sstd (arbitrary units) kA = Sstd/ Cstd

0.000 0.00 —
0.100 12.36 123.6
0.200 24.83 124.2
0.300 35.91 119.7
0.400 48.79 122.0
0.500 60.42 122.8

mean value for kA = 122.5
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uncorrected constant error affects our determination of kA. The first three 
columns show the concentration of analyte in the standards, Cstd, the signal 
without any source of constant error, Sstd, and the actual value of kA for five 
standards. As we expect, the value of kA is the same for each standard. In the 
fourth column we add a constant determinate error of +0.50 to the signals, 
(Sstd)e. The last column contains the corresponding apparent values of kA. 
Note that we obtain a different value of kA for each standard and that all of 
the apparent kA values are greater than the true value. 

How do we find the best estimate for the relationship between the 
signal and the concentration of analyte in a multiple-point standardiza-
tion?  Figure 5.8 shows the data in Table 5.1 plotted as a normal calibration 
curve. Although the data certainly appear to fall along a straight line, the 
actual calibration curve is not intuitively obvious. The process of math-
ematically determining the best equation for the calibration curve is called 
linear regression.

Table 5.2 Effect of a Constant Determinate Error on the Value of kA From a Single-
Point Standardization

Cstd
Sstd 

(without constant error)
kA = Sstd/ Cstd 

(actual)
(Sstd)e

(with constant error)
kA = (Sstd)e/ Cstd 

(apparent)
1.00 1.00 1.00 1.50 1.50
2.00 2.00 1.00 2.50 1.25
3.00 3.00 1.00 3.50 1.17
4.00 4.00 1.00 4.50 1.13
5.00 5.00 1.00 5.50 1.10

mean kA (true) = 1.00 mean kA (apparent) = 1.23

Figure 5.8 Normal calibration curve for the hypothetical multiple-point external 
standardization in Table 5.1.
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5D.1 Linear Regression of Straight Line Calibration Curves

When a calibration curve is a straight-line, we represent it using the follow-
ing mathematical equation

y x= +β β0 1 5.14

where y is the signal, Sstd, and x is the analyte’s concentration, Cstd. The 
constants b0 and b1 are, respectively, the calibration curve’s expected y-in-
tercept and its expected slope. Because of uncertainty in our measurements, 
the best we can do is to estimate values for b0 and b1, which we represent 
as b0 and b1.  The goal of a linear regression analysis is to determine the 
best estimates for b0 and b1. How we do this depends on the uncertainty 
in our measurements.

5D.2 Unweighted Linear Regression with Errors in y

The most common approach to completing a  linear regression for equation 
5.14 makes three assumptions:  

(1)  that any difference between our experimental data and the calculated 
regression line is the result of indeterminate errors affecting y, 

(2) that indeterminate errors affecting y are normally distributed, and 
(3) that the indeterminate errors in y are independent of the value of x. 

Because we assume that the indeterminate errors are the same for all stan-
dards, each standard contributes equally in estimating the slope and the 
y-intercept. For this reason the result is considered an unweighted linear 
regression.

The second assumption is generally true because of the central limit the-
orem, which we considered in Chapter 4. The validity of the two remaining 
assumptions is less obvious and you should evaluate them before accepting 
the results of a linear regression. In particular the first assumption is always 
suspect since there will certainly be some indeterminate errors affecting the 
values of x. When preparing a calibration curve, however, it is not unusual 
for the uncertainty in the signal, Sstd, to be significantly larger than that for 
the concentration of analyte in the standards Cstd. In such circumstances 
the first assumption is usually reasonable.

How a linear regreSSion workS

To understand the logic of an linear regression consider the example shown 
in Figure 5.9, which shows three data points and two possible straight-lines 
that might reasonably explain the data. How do we decide how well these 
straight-lines fits the data, and how do we determine the best straight-
line?

Let’s focus on the solid line in Figure 5.9. The equation for this line is

ŷ b b x= +0 1 5.15
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where b0 and b1 are our estimates for the y-intercept and the slope, and ŷ  is 
our prediction for the experimental value of y for any value of x. Because we 
assume that all uncertainty is the result of indeterminate errors affecting y, 
the difference between y and ŷ  for each data point is the residual error, 
r, in the our mathematical model for a particular value of x.

r y yi i i= −( ˆ )

Figure 5.10 shows the residual errors for the three data points. The smaller 
the total residual error, R, which we define as

R y yi i
i

= −∑( ˆ )2
5.16

the better the fit between the straight-line and the data. In a linear regres-
sion analysis, we seek values of b0 and b1 that give the smallest total residual 
error. 

If you are reading this aloud, you pro-
nounce ŷ as y-hat.

The reason for squaring the individual re-
sidual errors is to prevent positive residual 
error from canceling out negative residual 
errors. You have seen this before in the 
equations for the sample and popula-
tion standard deviations. You also can see 
from this equation why a linear regression 
is sometimes called the method of least 
squares.

Figure 5.9 Illustration showing three data points and two 
possible straight-lines that might explain the data. The goal 
of a linear regression is to find the mathematical model, in 
this case a straight-line, that best explains the data.

Figure 5.10 Illustration showing the evaluation of a linear regression in which we assume that all uncer-
tainty is the result of indeterminate errors affecting y. The points in blue, yi, are the original data and the 
points in red, ŷi , are the predicted values from the regression equation, ŷ b b x= +0 1 .The smaller the 
total residual error (equation 5.16), the better the fit of the straight-line to the data.

ŷ1
ŷ2

ŷ3

r y y1 1 1= −( ˆ )

r y y2 2 2= −( ˆ ) r y y3 3 3= −( ˆ )

ŷ b b x= +0 1

y1

y2

y3
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finding tHe Slope and y-intercept

Although we will not formally develop the mathematical equations for a 
linear regression analysis, you can find the derivations in many standard 
statistical texts.6 The resulting equation for the slope, b1, is 

b
n x y x y

n x x

i i
i

i
i

i
i

i
i

i
i

1

2
2

=
−

−

∑ ∑ ∑

∑ ∑
5.17

and the equation for the y-intercept, b0, is

b
y b x

n

i
i

i
i

0

1

=
−∑ ∑

5.18

Although equation 5.17 and equation 5.18 appear formidable, it is only 
necessary to evaluate the following four summations 

xi
i
∑

     
yi

i
∑

     
x yi i

i
∑

     
xi

i

2∑

Many calculators, spreadsheets, and other statistical software packages are 
capable of performing a linear regression analysis based on this model. To 
save time and to avoid tedious calculations, learn how to use one of these 
tools. For illustrative purposes the necessary calculations are shown in detail 
in the following example.

Example 5.9

Using the data from Table 5.1, determine the relationship between Sstd  
and Cstd using an unweighted linear regression.

Solution
We begin by setting up a table to help us organize the calculation.

xi yi xiyi xi
2

0.000 0.00 0.000 0.000
0.100 12.36 1.236 0.010
0.200 24.83 4.966 0.040
0.300 35.91 10.773 0.090
0.400 48.79 19.516 0.160
0.500 60.42 30.210 0.250

Adding the values in each column gives

xi
i
∑ = 1.500    yi

i
∑ = 182.31    x yi i

i
∑ = 66.701    xi

i

2∑ = 0.550

6 See, for example, Draper, N. R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New 
York, 1998.

See Section 5F in this chapter for details 
on completing a linear regression analysis 
using Excel and R.

Equations 5.17 and 5.18 are written in 
terms of the general variables x and y. As 
you work through this example, remem-
ber that x corresponds to Cstd, and that y 
corresponds to Sstd. 
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Substituting these values into equation 5.17 and equation 5.18, we find 
that the slope and the y-intercept are

 

b1

6 66 701 1 500 182 31

6 0 550 1 500
=

×( )− ×( )
×( )−
. . .

. .(( )
= ≈

2
120 706 120 71. .

b0

182 31 120 706 1 500

6
0 209 0 21=

− ×( )
= ≈

. . .
. .

The relationship between the signal and the analyte, therefore, is

Sstd = 120.71 × Cstd + 0.21

For now we keep two decimal places to match the number of decimal plac-
es in the signal. The resulting calibration curve is shown in Figure 5.11.

uncertainty in tHe regreSSion analySiS

As shown in Figure 5.11, because of indeterminate error affecting our signal, 
the regression line may not pass through the exact center of each data point. 
The cumulative deviation of our data from the regression line—that is, the 
total residual error—is proportional to the uncertainty in the regression. 
We call this uncertainty the standard deviation about the regression, 
sr, which is equal to

s
y y

n

i i
i

r =
−( )
−

∑ ˆ 2

2
5.19

Figure 5.11 Calibration curve for the data in Table 5.1 and Example 5.9.

Did you notice the similarity between the 
standard deviation about the regression 
(equation 5.19) and the standard devia-
tion for a sample (equation 4.1)?
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where yi is the ith experimental value, and ŷi  is the corresponding value pre-
dicted by the regression line in equation 5.15. Note that the denominator 
of equation 5.19 indicates that our regression analysis has n–2 degrees of 
freedom—we lose two degree of freedom because we use two parameters, 
the slope and the y-intercept, to calculate ŷi .

A more useful representation of the uncertainty in our regression is 
to consider the effect of indeterminate errors on the slope, b1, and the y-
intercept, b0, which we express as standard deviations. 

s
ns

n x x

s

x x
b

i
i

i
i

i
i

1

2

2
2

2

2
=

−

=
−( )∑ ∑

r r

∑∑ 5.20

s
s x

n x x

s x

b

i
i

i
i

i
i

i
i

0

2 2

2
2

2 2

=

−

=
∑

∑ ∑

r r∑∑

∑ −( )n x xi
i

2 5.21

We use these standard deviations to establish confidence intervals for the 
expected slope, b1, and the expected y-intercept, b0

β1 1 1
= ±b tsb 5.22

β0 0 0
= ±b tsb 5.23

where we select t for a significance level of a and for n–2 degrees of free-
dom. Note that equation 5.22 and equation 5.23 do not contain a factor of 
( )n −1 because the confidence interval is based on a single regression line. 

Again, many calculators, spreadsheets, and computer software packages 
provide the standard deviations and confidence intervals for the slope and 
y-intercept. Example 5.10 illustrates the calculations.

Example 5.10

Calculate the 95% confidence intervals for the slope and y-intercept from 
Example 5.9.

Solution
We begin by calculating the standard deviation about the regression. To do 
this we must calculate the predicted signals, ŷi , using the slope and y-in-
tercept from Example 5.9, and the squares of the residual error, ( ˆ )y yi i− 2 . 
Using the last standard as an example, we find that the predicted signal is

ˆ . . . .y b b x6 0 1 6 0 209 120 706 0 500 60 562= + = + ×( )=

and that the square of the residual error is

You might contrast this with equation 
4.12 for the confidence interval around a 
sample’s mean value.

As you work through this example, re-
member that x corresponds to Cstd, and 
that y corresponds to Sstd. 
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( ˆ ) ( . . ) . .y yi i− = − = ≈2 260 42 60 562 0 2016 0 202

The following table displays the results for all six solutions.

xi yi ŷi ( ˆ )y yi i− 2

0.000 0.00 0.209 0.0437
0.100 12.36 12.280 0.0064
0.200 24.83 24.350 0.2304
0.300 35.91 36.421 0.2611
0.400 48.79 48.491 0.0894
0.500 60.42 60.562 0.0202

Adding together the data in the last column gives the numerator of equa-
tion 5.19 as 0.6512. The standard deviation about the regression, therefore, 
is

sr = −
=

0 6512
6 2

0 4035
.

.

Next we calculate the standard deviations for the slope and the y-intercept 
using equation 5.20 and equation 5.21. The values for the summation 
terms are from in Example 5.9.

s
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n x x
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i

i
i

1

2

2
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2
6 0 4035

=

−

=
×( )
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r
.

66 0 550 1 550
0 965

2
×( )−( )

=
. .

.

s
s x

n x x
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i
i

i
i

i
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2 2

2
2

0 4035
=

−

=
(∑

∑ ∑

r . )) ×
×( )−( )

2

2

0 550

6 0 550 1 550

.

. .

Finally, the 95% confidence intervals (a = 0.05, 4 degrees of freedom) for 
the slope and y-intercept are

β1 1 1
120 706 2 78 0 965 120 7 2 7= ± = ± ×( )= ±b tsb . . . . .

β0 0 0
0 209 2 78 0 292 0 2 0 8= ± = ± ×( )= ±b tsb . . . . .

The standard deviation about the regression, sr, suggests that the signal, Sstd, 
is precise to one decimal place. For this reason we report the slope and the 
y-intercept to a single decimal place.

You can find values for t in Appendix 4.
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MiniMizing uncertainty in calibration curveS

To minimize the uncertainty in a calibration curve’s slope and y-intercept, 
you should evenly space your standards over a wide range of analyte con-
centrations. A close examination of equation 5.20 and equation 5.21 will 
help you appreciate why this is true. The denominators of both equations 
include the term ( )x xi −∑ 2 . The larger the value of this term—which 
you accomplish by increasing the range of x around its mean value—the 
smaller the standard deviations in the slope and the y-intercept. Further-
more, to minimize the uncertainty in the y-intercept, it also helps to de-
crease the value of the term xi∑  in equation 5.21, which you accomplish 
by including standards for lower concentrations of the analyte.   

obtaining tHe analyte’S concentration froM a regreSSion equation

Once we have our regression equation, it is easy to determine the concen-
tration of analyte in a sample. When using a normal calibration curve, for 
example, we measure the signal for our sample, Ssamp, and calculate the 
analyte’s concentration, CA, using the regression equation.

C
S b

bA =
−samp 0

1
5.24

What is less obvious is how to report a confidence interval for CA that 
expresses the uncertainty in our analysis. To calculate a confidence interval 
we need to know the standard deviation in the analyte’s concentration, sCA

, 
which is given by the following equation

s
s
b m n

S S

b C C
C

r

i
i

A

std

samp std

std

= + +
−( )

( ) −( )∑1

2

1
2 2

1 1
5.25

where m is the number of replicate used to establish the sample’s average 
signal ( Ssamp ), n is the number of calibration standards, Sstd  is the average 
signal for the calibration standards, and C istd  and C std  are the individual and 
mean concentrations for the calibration standards.7 Knowing the value of 
sCA

 , the confidence interval for the analyte’s concentration is

µ
A AAC CC ts= ±

where mCA is the expected value of CA in the absence of determinate errors, 
and with the value of t based on the desired level of confidence and n–2 
degrees of freedom. 

7 (a) Miller, J. N. Analyst 1991, 116, 3–14; (b) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Ch-
emometrics, Wiley-Interscience: New York, 1986, pp. 126-127; (c) Analytical Methods Commit-
tee “Uncertainties in concentrations estimated from calibration experiments,” AMC Technical 
Brief, March 2006 (http://www.rsc.org/images/Brief22_tcm18-51117.pdf )

Equation 5.25 is written in terms of a cali-
bration experiment. A more general form 
of the equation, written in terms of x and 
y, is given here.

s
s

b m n

Y y

b x x
x

r

i

i

= + +
−

−

( )
( ) ( )∑1

2

1

2 2

1 1

A close examination of equation 5.25 
should convince you that the uncertainty 
in CA is smallest when the sample’s av-
erage signal, S

samp
, is equal to the average 

signal for the standards, S
std

. When prac-
tical, you should plan your calibration 
curve so that Ssamp falls in the middle of 
the calibration curve.

http://www.rsc.org/images/Brief22_tcm18-51117.pdf
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Example 5.11

Three replicate analyses for a sample containing an unknown concentra-
tion of analyte, yield values for Ssamp of 29.32, 29.16 and 29.51. Using 
the results from Example 5.9 and Example 5.10, determine the analyte’s 
concentration, CA, and its 95% confidence interval.

Solution
The average signal, Ssamp , is 29.33, which, using equation 5.24 and the 
slope and the y-intercept from Example 5.9, gives the analyte’s concentra-
tion as

C
S b

bA =
−

=
−

=samp 0

1

29 33 0 209
120 706

0 241
. .

.
.

To calculate the standard deviation for the analyte’s concentration we must 
determine the values for Sstd  and C Cstd stdi

−( )∑
2

. The former is just the 
average signal for the calibration standards, which, using the data in Table 
5.1, is 30.385. Calculating C Cstd stdi

−( )∑
2

looks formidable, but we can sim-
plify its calculation by recognizing that this sum of squares term is the 
numerator in a standard deviation equation; thus,

C C s nstd std Ci std
−( ) =( ) × −( )∑

2 2

1

where sCstd
 is the standard deviation for the concentration of analyte in 

the calibration standards. Using the data in Table 5.1 we find that sCstd
 is 

0.1871 and

C Cstd stdi
−( ) = × − =∑

2
20 1871 6 1 0 175( . ) ( ) .

Substituting known values into equation 5.25 gives

sCA
= + +

−( )0 4035
120 706

1
3

1
6

29 33 30 385

120 7

2
.

.

. .

. 006 0 175
0 0024

2( ) ×
=

.
.

Finally, the 95% confidence interval for 4 degrees of freedom is

µ
A AAC CC ts= ± = ± ×( )= ±0 241 2 78 0 0024 0 241 0 007. . . . .

Figure 5.12 shows the calibration curve with curves showing the 95% 
confidence interval for CA.

You can find values for t in Appendix 4.
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In a standard addition we determine the analyte’s concentration by 
extrapolating the calibration curve to the x-intercept. In this case the value 
of CA is

C x
b

bA -intercept= =
− 0

1

and the standard deviation in CA is

Figure 5.12 Example of a normal calibration curve with 
a superimposed confidence interval for the analyte’s con-
centration. The points in blue are the original data from 
Table 5.1. The black line is the normal calibration curve 
as determined in Example 5.9. The red lines show the 
95% confidence interval for CA assuming a single deter-
mination of Ssamp.

Practice Exercise 5.4
Figure 5.3 shows a normal calibration curve for the quantitative analysis 
of Cu2+. The data for the calibration curve are shown here.

[Cu2+] (M) Absorbance
0 0

1.55×10–3 0.050

3.16×10–3 0.093

4.74×10–3 0.143

6.34×10–3 0.188

7.92×10–3 0.236

Complete a linear regression analysis for this calibration data, reporting 
the calibration equation and the 95% confidence interval for the slope 
and the y-intercept. If three replicate samples give an Ssamp of 0.114, 
what is the concentration of analyte in the sample and its 95% confi-
dence interval?

Click here to review your answer to this exercise.
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1
2 2

1

where n is the number of standard additions (including the sample with no 
added standard), and Sstd  is the average signal for the n standards. Because 
we determine the analyte’s concentration by extrapolation, rather than by 
interpolation, sCA

 for the method of standard additions generally is larger 
than for a normal calibration curve.

evaluating a linear regreSSion Model

You should never accept the result of a linear regression analysis without 
evaluating the validity of the your model. Perhaps the simplest way to evalu-
ate a regression analysis is to examine the residual errors. As we saw earlier, 
the residual error for a single calibration standard, ri, is

r y yi i i= −( ˆ )

If your regression model is valid, then the residual errors should be ran-
domly distributed about an average residual error of zero, with no apparent 
trend toward either smaller or larger residual errors (Figure 5.13a). Trends 
such as those shown in Figure 5.13b and Figure 5.13c provide evidence that 
at least one of the model’s assumptions is incorrect. For example, a trend 
toward larger residual errors at higher concentrations, as shown in Figure 
5.13b, suggests that the indeterminate errors affecting the signal are not 
independent of the analyte’s concentration. In Figure 5.13c, the residual 

Figure 5.13 Plot of the residual error in the signal, Sstd, as a function of the concentration of analyte, Cstd for an 
unweighted straight-line regression model. The red line shows a residual error of zero. The distribution of the residual 
error in (a) indicates that the unweighted linear regression model is appropriate. The increase in the residual errors in 
(b) for higher concentrations of analyte, suggest that a weighted straight-line regression is more appropriate. For (c), the 
curved pattern to the residuals suggests that a straight-line model is inappropriate; linear regression using a quadratic 
model might produce a better fit.
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errors are not random, suggesting that the data can not be modeled with a 
straight-line relationship. Regression methods for these two cases are dis-
cussed in the following sections. 

5D.3 Weighted Linear Regression with Errors in y

Our treatment of linear regression to this point assumes that indeterminate 
errors affecting y are independent of the value of x. If this assumption is 
false, as is the case for the data in Figure 5.13b, then we must include the 
variance for each value of y into our determination of the y-intercept, bo, 
and the slope, b1; thus

b
w y b w x

n

i i
i

i i
i

0

1

=
−∑ ∑

5.26

b
n w x y w x w y

n w x w x

i i i
i

i i
i

i i
i

i i
i

i i
i

1

2

=
−

−

∑ ∑ ∑

∑ ∑
2 5.27

where wi is a weighting factor that accounts for the variance in yi

w
n s

s
i

y

y
i

i

i

=
( )
( )

−

−

∑

2

2 5.28

and s yi
 is the standard deviation for yi. In a weighted linear regression, 

each xy-pair’s contribution to the regression line is inversely proportional 
to the precision of yi—that is, the  more precise the value of y, the greater 
its contribution to the regression.

Example 5.12

Shown here are data for an external standardization in which sstd is the 
standard deviation for three replicate determination of the signal.

Cstd (arbitrary units) Sstd (arbitrary units) sstd

0.000 0.00 0.02
0.100 12.36 0.02
0.200 24.83 0.07

Practice Exercise 5.5
Using your results from Practice Exercise 5.4, construct a residual plot 
and explain its significance.

Click here to review your answer to this exercise. 

This is the same data used in Example 5.9 
with additional information about the 
standard deviations in the signal.
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0.300 35.91 0.13
0.400 48.79 0.22
0.500 60.42 0.33

Determine the calibration curve’s equation using a weighted linear regres-
sion.

Solution
We begin by setting up a table to aid in calculating the weighting factors.

xi yi s yi
s yi
( )

−2
wi

0.000 0.00 0.02 2500.00 2.8339
0.100 12.36 0.02 2500.00 2.8339
0.200 24.83 0.07 204.08 0.2313
0.300 35.91 0.13 59.17 0.0671
0.400 48.79 0.22 20.66 0.0234
0.500 60.42 0.33 9.18 0.0104

Adding together the values in the forth column gives

s y
i

i
( ) =∑

2
5293 09.

which we use to calculate the individual weights in the last column. After 
calculating the individual weights, we use a second table to aid in calculat-
ing the four summation terms in equation 5.26 and equation 5.27.

xi yi wi wi xi wi yi wi xi
2 wi xi yi

0.000 0.00 2.8339 0.0000 0.0000 0.0000 0.0000
0.100 12.36 2.8339 0.2834 35.0270 0.0283 3.5027
0.200 24.83 0.2313 0.0463 5.7432 0.0093 1.1486
0.300 35.91 0.0671 0.0201 2.4096 0.0060 0.7229
0.400 48.79 0.0234 0.0094 1.1417 0.0037 0.4567
0.500 60.42 0.0104 0.0052 0.6284 0.0026 0.3142

Adding the values in the last four columns gives

w x w y

w x

i i
i

i i
i

i i
i

∑ ∑

∑

= =

=

0 3644 44 9499

02

. .

.00499 6 1451w x yi i i
i
∑ = .

Substituting these values into the equation 5.26 and equation 5.27 gives 
the estimated slope and estimated y-intercept as

As you work through this example, re-
member that x corresponds to Cstd, and 
that y corresponds to Sstd. 

As a check on your calculations, the sum 
of the individual weights must equal the 
number of calibration standards, n. The 
sum of the entries in the last column is 
6.0000, so all is well.
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b1

6 6 1451 0 3644 44 9499
6 0 0499 0

=
× − ×

× −
( . ) ( . . )

( . ) ( .. )
.

3644
122 985

2
=

b0

44 9499 122 985 0 3644
6

0 0224=
− ×

=
. ( . . )

.

The calibration equation is

Sstd = 122.98 × Cstd + 0.02

Figure 5.14 shows the calibration curve for the weighted regression and the 
calibration curve for the unweighted regression in Example 5.9. Although 
the two calibration curves are very similar, there are slight differences in the 
slope and in the y-intercept. Most notably, the y-intercept for the weighted 
linear regression is closer to the expected value of zero. Because the stan-
dard deviation for the signal, Sstd, is smaller for smaller concentrations of 
analyte, Cstd, a weighted linear regression gives more emphasis to these 
standards, allowing for a better estimate of the y-intercept.

Equations for calculating confidence intervals for the slope, the y-in-
tercept, and the concentration of analyte when using a weighted linear 
regression are not as easy to define as for an unweighted linear regression.8 
The confidence interval for the analyte’s concentration, however, is at its 

8 Bonate, P. J. Anal. Chem. 1993, 65, 1367–1372.

Figure 5.14 A comparison of unweighted and weighted normal calibration curves. 
See Example 5.9 for details of the unweighted linear regression and Example 5.12 
for details of the weighted linear regression.
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optimum value when the analyte’s signal is near the weighted centroid, yc
, of the calibration curve.

y
n

w xc i i
i

= ∑1

5D.4 Weighted Linear Regression with Errors in Both x and y

If we remove our assumption that the indeterminate errors affecting a cali-
bration curve exist only in the signal (y), then we also must factor into 
the regression model the indeterminate errors affecting the analyte’s con-
centration in the calibration standards (x). The solution for the resulting 
regression line is computationally more involved than that for either the 
unweighted or weighted regression lines.9 Although we will not consider 
the details in this textbook, you should be aware that neglecting the pres-
ence of indeterminate errors in x can bias the results of a linear regression. 

5D.5 Curvilinear and Multivariate Regression

A straight-line regression model, despite its apparent complexity, is the 
simplest functional relationship between two variables. What do we do if 
our calibration curve is curvilinear—that is, if it is a curved-line instead of 
a straight-line? One approach is to try transforming the data into a straight-
line. Logarithms, exponentials, reciprocals, square roots, and trigonometric 
functions have been used in this way. A plot of log(y) versus x is a typical 
example. Such transformations are not without complications. Perhaps the 
most obvious complication is that data with a uniform variance in y will not 
maintain that uniform variance after the transformation.

Another approach to developing a linear regression model is to fit a 
polynomial equation to the data, such as y = a + bx + cx2. You can use 
linear regression to calculate the parameters a, b, and c, although the equa-
tions are different than those for the linear regression of a straight line.10 
If you cannot fit your data using a single polynomial equation, it may be 
possible to fit separate polynomial equations to short segments of the cali-
bration curve. The result is a single continuous calibration curve known as 
a spline function.

The regression models in this chapter apply only to functions containing 
a single independent variable, such as a signal that depends upon the ana-
lyte’s concentration. In the presence of an interferent, however, the signal 
may depend on the concentrations of both the analyte and the interferent

9 See, for example, Analytical Methods Committee, “Fitting a linear functional relationship to 
data with error on both variable,” AMC Technical Brief, March, 2002 (http://www.rsc.org/im-
ages/brief10_tcm18-25920.pdf ).

10 For details about curvilinear regression, see (a) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. 
Chemometrics, Wiley-Interscience: New York, 1986; (b) Deming, S. N.; Morgan, S. L. Experi-
mental Design: A Chemometric Approach, Elsevier: Amsterdam, 1987.

See Figure 5.2 for an example of a calibra-
tion curve that deviates from a straight-
line for higher concentrations of analyte.

It is worth noting that in mathematics, the 
term “linear” does not mean a straight-
line. A linear function may contain many 
additive terms, but each term can have 
one and only one adjustable parameter. 
The function

y = ax + bx2

is linear, but the function

y = axb

is nonlinear. This is why you can use linear 
regression to fit a polynomial equation to 
your data. 

Sometimes it is possible to transform a 
nonlinear function. For example, taking 
the log of both sides of the nonlinear func-
tion shown above gives a linear function.

log(y) = log(a) + blog(x)

http://www.rsc.org/images/brief10_tcm18-25920.pdf
http://www.rsc.org/images/brief10_tcm18-25920.pdf
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S k C kC S= + +A A I I reag

where kI is the interferent’s sensitivity and CI is the interferent’s concentra-
tion. Multivariate calibration curves can be prepared using standards that 
contain known amounts of both the analyte and the interferent, and mod-
eled using multivariate regression.11

5E Blank Corrections
Thus far in our discussion of strategies for standardizing analytical methods, 
we have assumed the use of a suitable reagent blank to correct for signals 
arising from sources other than the analyte. We did not, however ask an 
important question—“What constitutes an appropriate reagent blank?” 
Surprisingly, the answer is not immediately obvious.

In one study, approximately 200 analytical chemists were asked to evalu-
ate a data set consisting of a normal calibration curve, a separate analyte-free 
blank, and three samples of different size but drawn from the same source.12  
The first two columns in Table 5.3 shows a series of external standards and 
their corresponding signals. The normal calibration curve for the data is

Sstd = 0.0750 × Wstd + 0.1250

where the y-intercept of 0.1250 is the calibration blank. A separate reagent 
blank gives the signal for an analyte-free sample.

In working up this data, the analytical chemists used at least four dif-
ferent approaches for correcting signals: (a) ignoring both the calibration 
blank, CB, and the reagent blank, RB, which clearly is incorrect; (b) using 
the calibration blank only; (c) using the reagent blank only; and (d) using 
both the calibration blank and the reagent blank. Table 5.4 shows the equa-

11 Beebe, K. R.; Kowalski, B. R. Anal. Chem. 1987, 59, 1007A–1017A.
12 Cardone, M. J. Anal. Chem. 1986, 58, 433–438.

Table 5.3 Data Used to Study the Blank in an Analytical Method
Wstd Sstd Sample Number Wsamp Ssamp

1.6667 0.2500 1 62.4746 0.8000
5.0000 0.5000 2 82.7915 1.0000
8.3333 0.7500 3 103.1085 1.2000

11.6667 0.8413
18.1600 1.4870 reagent blank 0.1000
19.9333 1.6200

Calibration equation: Sstd = 0.0750 × Wstd + 0.1250
Wstd: weight of analyte used to prepare the external standard; diluted to volume, V.
Wsamp: weight of sample used to prepare sample; diluted to volume, V.

Check out the Additional Resources at the 
end of the textbook for more information 
about linear regression with errors in both 
variables, curvilinear regression, and mul-
tivariate regression.
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tions for calculating the analyte’s concentration using each approach, along 
with the resulting concentration for the analyte in each sample.

That all four methods give a different result for the analyte’s concentra-
tion underscores the importance of choosing a proper blank, but does not 
tell us which blank is correct. Because all four methods fail to predict the 
same concentration of analyte for each sample, none of these blank correc-
tions properly accounts for an underlying constant source of determinate 
error.

To correct for a constant method error, a blank must account for signals 
from any reagents and solvents used in the analysis, as well as any bias re-
sulting from interactions between the analyte and the sample’s matrix. Both 
the calibration blank and the reagent blank compensate for signals from 
reagents and solvents. Any difference in their values is due to indeterminate 
errors in preparing and analyzing the standards.

Unfortunately, neither a calibration blank nor a reagent blank can cor-
rect for a bias resulting from an interaction between the analyte and the 
sample’s matrix. To be effective, the blank must include both the sample’s 
matrix and the analyte and, consequently, must be determined using the 
sample itself. One approach is to measure the signal for samples of differ-
ent size, and to determine the regression line for a plot of Ssamp versus the 

Table 5.4 Equations and Resulting Concentrations of Analyte for Different 
Approaches to Correcting for the Blank

Concentration of Analyte in...
Approach for Correcting Signal Equation Sample 1 Sample 2 Sample 3

ignore calibration and reagent blank C
W

W

S

k WA
A

samp

samp

A samp

= = 0.1707 0.1610 0.1552

use calibration blank only C
W

W

S

k WA
A

samp

samp

A samp

CB
= =

−
0.1441 0.1409 0.1390

use reagent blank only C
W

W

S

k WA
A

samp

samp

A samp

RB
= =

−
0.1494 0.1449 0.1422

use both calibration and reagent blank C
W

W

S

k WA
A

samp

samp

A samp

CB RB
= =

− −
0.1227 0.1248 0.1261

use total Youden blank C
W

W

S

k WA
A

samp

samp

A samp

TYB
= =

−
0.1313 0.1313 0.1313

CA = concentration of analyte; WA = weight of analyte; Wsamp = weight of sample; kA = slope of calibration curve (0.075–see 
Table 5.3); CB = calibration blank (0.125–see Table 5.3); RB = reagent blank (0.100–see Table 5.3); TYB = total Youden blank 
(0.185–see text)

Because we are considering a matrix effect 
of sorts, you might think that the method 
of standard additions is one way to over-
come this problem. Although the method 
of standard additions can compensate for 
proportional determinate errors, it cannot 
correct for a constant determinate error; 
see Ellison, S. L. R.; Thompson, M. T. 
“Standard additions: myth and reality,” 
Analyst, 2008, 133, 992–997. 
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amount of sample. The resulting y-intercept gives the signal in the absence 
of sample, and is known as the total youden blank.13 This is the true 
blank correction. The regression line for the three samples in Table 5.3 is

Ssamp = 0.009844 × Wsamp + 0.185

giving a true blank correction of 0.185. As shown by the last row of Table 
5.4, using this value to correct Ssamp gives identical values for the concentra-
tion of analyte in all three samples.

The use of the total Youden blank is not common in analytical work, 
with most chemists relying on a calibration blank when using a calibra-
tion curve, and a reagent blank when using a single-point standardization. 
As long we can ignore any constant bias due to interactions between the 
analyte and the sample’s matrix, which is often the case, the accuracy of an 
analytical method will not suffer. It is a good idea, however, to check for 
constant sources of error before relying on either a calibration blank or a 
reagent blank.

5F Using Excel and R for a Regression Analysis
Although the calculations in this chapter are relatively straightforward—
consisting, as they do, mostly of summations—it can be quite tedious to 
work through problems using nothing more than a calculator. Both Excel 
and R include functions for completing a linear regression analysis and for 
visually evaluating the resulting model.

5F.1 Excel

Let’s use Excel to fit the following straight-line model to the data in Ex-
ample 5.9. 

y x= +β β0 1

Enter the data into a spreadsheet, as shown in Figure 5.15. Depending 
upon your needs, there are many ways that you can use Excel to complete 
a linear regression analysis. We will consider three approaches here.

uSe excel’S built-in functionS

If all you need are values for the slope, b1, and the y-intercept, b0, you can 
use the following functions:

=intercept(known_y’s, known_x’s)

=slope(known_y’s, known_x’s)

where known_y’s is the range of cells containing the signals (y), and known_x’s 
is the range of cells containing the concentrations (x). For example, clicking 
on an empty cell and entering

13 Cardone, M. J. Anal. Chem. 1986, 58, 438–445.

Figure 5.15 Portion of a spread-
sheet containing data from Ex-
ample 5.9 (Cstd = Cstd; Sstd = 
Sstd).

A B
1 Cstd Sstd
2 0.000 0.00
3 0.100 12.36
4 0.200 24.83
5 0.300 35.91
6 0.400 48.79
7 0.500 60.42
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=slope(B2:B7, A2:A7)

returns Excel’s exact calculation for the slope (120.705 714 3).

uSe excel’S data analySiS toolS

To obtain the slope and the y-intercept, along with additional statistical 
details, you can use the data analysis tools in the Analysis ToolPak. The 
ToolPak is not a standard part of Excel’s instillation. To see if you have 
access to the Analysis ToolPak on your computer, select Tools from the 
menu bar and look for the Data Analysis... option. If you do not see Data 
Analysis..., select Add-ins... from the Tools menu. Check the box for the 
Analysis ToolPak and click on OK to install them. 

Select Data Analysis... from the Tools menu, which opens the Data 
Analysis window. Scroll through the window, select Regression from the 
available options, and press OK. Place the cursor in the box for Input Y 
range and then click and drag over cells B1:B7. Place the cursor in the box 
for Input X range and click and drag over cells A1:A7. Because cells A1 and 
B1 contain labels, check the box for Labels. Select the radio button for 
Output range and click on any empty cell; this is where Excel will place the 
results. Clicking OK generates the information shown in Figure 5.16.

There are three parts to Excel’s summary of a regression analysis. At the 
top of Figure 5.16 is a table of Regression Statistics. The standard error is the 
standard deviation about the regression, sr. Also of interest is the value for 
Multiple R, which is the model’s correlation coefficient, r, a term with which 
you may already by familiar. The correlation coefficient is a measure of the 
extent to which the regression model explains the variation in y. Values of r 
range from –1 to +1. The closer the correlation coefficient is to ±1, the bet-
ter the model is at explaining the data. A correlation coefficient of 0 means 
that there is no relationship between x and y. In developing the calculations 
for linear regression, we did not consider the correlation coefficient. There 

Once you install the Analysis ToolPak, it 
will continue to load each time you launch 
Excel.

Figure 5.16 Output from Excel’s Regression command in the Analysis ToolPak. See the text for a discussion of how to 
interpret the information in these tables.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99987244
R Square 0.9997449
Adjusted R Square 0.99968113
Standard Error 0.40329713
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 2549.727156 2549.72716 15676.296 2.4405E-08
Residual 4 0.650594286 0.16264857
Total 5 2550.37775

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.20857143 0.29188503 0.71456706 0.51436267 -0.60183133 1.01897419 -0.60183133 1.01897419
Cstd 120.705714 0.964064525 125.205016 2.4405E-08 118.029042 123.382387 118.029042 123.382387

Including labels is a good idea. Excel’s 
summary output uses the x-axis label to 
identify the slope. 
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is a reason for this. For most straight-line calibration curves the correla-
tion coefficient will be very close to +1, typically 0.99 or better. There is 
a tendency, however, to put too much faith in the correlation coefficient’s 
significance, and to assume that an r greater than 0.99 means the linear 
regression model is appropriate. Figure 5.17 provides a counterexample.  
Although the regression line has a correlation coefficient of 0.993, the data 
clearly shows evidence of being curvilinear. The take-home lesson here is: 
don’t fall in love with the correlation coefficient!

The second table in Figure 5.16 is entitled ANOVA, which stands for 
analysis of variance. We will take a closer look at ANOVA in Chapter 14. 
For now, it is sufficient to understand that this part of Excel’s summary 
provides information on whether the linear regression model explains a 
significant portion of the variation in the values of y. The value for F is the 
result of an F-test of the following null and alternative hypotheses.

H0: regression model does not explain the variation in y

HA: regression model does explain the variation in y

The value in the column for Significance F is the probability for retaining 
the null hypothesis. In this example, the probability is 2.5×10–6%, sug-
gesting that there is strong evidence for accepting the regression model. As 
is the case with the correlation coefficient, a small value for the probability 
is a likely outcome for any calibration curve, even when the model is inap-
propriate. The probability for retaining the null hypothesis for the data in 
Figure 5.17, for example, is 9.0×10–7%.

The third table in Figure 5.16 provides a summary of the model itself. 
The values for the model’s coefficients—the slope, b1, and the y-intercept, 
b0—are identified as intercept and with your label for the x-axis data, which 
in this example is Cstd. The standard deviations for the coefficients, sb0 and 
sb1, are in the column labeled Standard error. The column t Stat and the 
column P-value are for the following t-tests.

slope H0: b1 = 0, HA: b1 ≠ 0

y-intercept H0: b0 = 0, HA:  b0 ≠ 0

The results of these t-tests provide convincing evidence that the slope is 
not zero, but no evidence that the y-intercept significantly differs from 
zero. Also shown are the 95% confidence intervals for the slope and the 
y-intercept (lower 95% and upper 95%).

prograM tHe forMulaS yourSelf

A third approach to completing a regression analysis is to program a spread-
sheet using Excel’s built-in formula for a summation 

=sum(first cell:last cell)
and its ability to parse mathematical equations. The resulting spreadsheet 
is shown in Figure 5.18.

Figure 5.17 Example of fitting a 
straight-line to curvilinear data.

See Section 4F.2 and Section 4F.3 for a 
review of the F-test.

See Section 4F.1 for a review of the t-test.
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uSing excel to viSualize tHe regreSSion Model

You can use Excel to examine your data and the regression line. Begin by 
plotting the data. Organize your data in two columns, placing the x values 
in the left-most column. Click and drag over the data and select Insert: 
Chart... from the main menu. This launches Excel’s Chart Wizard. Select 
xy-chart, choosing the option without lines connecting the points. Click 
on Next and work your way through the screens, tailoring the plot to meet 
your needs. To add a regression line to the chart, click on the chart and 
select Chart: Add Trendline... from the main men. Pick the straight-line 
model and click OK to add the line to your chart. By default, Excel displays 
the regression line from your first point to your last point. Figure 5.19 
shows the result for the data in Figure 5.15.

Figure 5.19 Example of an Excel scatterplot show-
ing the data and a regression line. 

Figure 5.18 Spreadsheet showing the formulas for calculating the slope and the y-intercept for the data in Ex-
ample 5.9. The cells with the shading contain formulas that you must enter. Enter the formulas in cells C3 to 
C7, and cells D3 to D7. Next, enter the formulas for cells A9 to D9. Finally, enter the formulas in cells F2 and 
F3. When you enter a formula, Excel replaces it with the resulting calculation. The values in these cells should 
agree with the results in Example 5.9. You can simplify the entering of formulas by copying and pasting. For 
example, enter the formula in cell C2. Select Edit: Copy, click and drag your cursor over cells C3 to C7, and 
select Edit: Paste. Excel automatically updates the cell referencing.

Excel’s default options for xy-charts do not 
make for particularly attractive scientific 
figures. For example, Excel automatically 
adds grid lines parallel to the x-axis, which 
is a common practice in business charts. 
You can deselect them using the Grid 
lines tab in the Chart Wizard. Excel also 
defaults to a gray background. To remove 
this, just double-click on the chart’s back-
ground and select none in the resulting 
pop-up window.

A B C D E F

1 x y xy x^2 n = 6
2 0.000 0.00 =A2*B2 =A2^2 slope = =(F1*C8 - A8*B8)/(F1*D8-A8^2)
3 0.100 12.36 =A3*B3 =A3^2 y-int = =(B8-F2*A8)/F1
4 0.200 24.83 =A4*B4 =A4^2
5 0.300 35.91 =A5*B5 =A5^2
6 0.400 48.79 =A6*B6 =A6^2
7 0.500 60.42 =A7*B7 =A7^2
8

9 =sum(A2:A7) =sum(B2:B7) =sum(C2:C7) =sum(D2:D7) <--sums
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Excel also will create a plot of the regression model’s residual errors. To 
create the plot, build the regression model using the Analysis ToolPak, as 
described earlier. Clicking on the option for Residual plots creates the plot 
shown in Figure 5.20.

liMitationS to uSing excel for a regreSSion analySiS

Excel’s biggest limitation for a regression analysis is that it does not pro-
vide a function for calculating the uncertainty when predicting values of 
x. In terms of this chapter, Excel can not calculate the uncertainty for the 
analyte’s concentration, CA, given the signal for a sample, Ssamp. Another 
limitation is that Excel does not include a built-in function for a weighted 
linear regression. You can, however, program a spreadsheet to handle these 
calculations.

5F.2 R

Let’s use Excel to fit the following straight-line model to the data in Ex-
ample 5.9. 

y x= +β β0 1

entering data and creating tHe regreSSion Model

To begin, create objects containing the concentration of the standards and 
their corresponding signals.

> conc = c(0, 0.1, 0.2, 0.3, 0.4, 0.5)
> signal = c(0, 12.36, 24.83, 35.91, 48.79, 60.42)

The command for creating a straight-line linear regression model is

lm(y ~ x)As you might guess, lm is short for linear 
model.

Figure 5.20 Example of Excel’s plot of a regression 
model’s residual errors.
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Practice Exercise 5.6
Use Excel to complete the 
regression analysis in Practice 
Exercise 5.4.

Click here to review your an-
swer to this exercise.
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where y and x are the objects containing our data. To access the results of 
the regression analysis, we assign them to an object using the following 
command

> model = lm(signal ~ conc)
where model is the name we assign to the object. 

evaluating tHe linear regreSSion Model

To evaluate the results of a linear regression we need to examine the data 
and the regression line, and to review a statistical summary of the model. To 
examine our data and the regression line, we use the plot command, which 
takes the following general form

plot(x, y, optional arguments to control style)

where x and y are objects containing our data, and the abline command

abline(object, optional arguments to control style)

where object is the object containing the results of the linear regression. 
Entering the commands

> plot(conc, signal, pch = 19, col = “blue”, cex = 2)
> abline(model, col = “red”)

creates the plot shown in Figure 5.21. 
To review a statistical summary of the regression model, we use the 

summary command.
> summary(model)

The resulting output, shown in Figure 5.22, contains three sections. 
The first section of R’s summary of the regression model lists the re-

sidual errors. To examine a plot of the residual errors, use the command
> plot(model, which=1)

Figure 5.21 Example of a regression plot in R showing the data and 
the regression line. You can customize your plot by adjusting the 
plot command’s optional arguments. The argument pch controls 
the symbol used for plotting points, the argument col allows you to 
select a color for the points or the line, and the argument cex sets 
the size for the points. You can use the command 

help(plot) 
to learn more about the options for plotting data in R.

The name abline comes from the follow-
ing common form for writing the equa-
tion of a straight-line.

y = a + bx
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The reason for including the argument 
which=1 is not immediately obvious. 
When you use R’s plot command on an 
object created by the lm command, the de-
fault is to create four charts summarizing 
the model’s suitability. The first of these 
charts is the residual plot; thus, which=1 
limits the output to this plot.

You can choose any name for the object 
containing the results of the regression 
analysis.
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which produces the result shown in Figure 5.23. Note that R plots the re-
siduals against the predicted (fitted) values of y instead of against the known 
values of x. The choice of how to plot the residuals is not critical, as you can 
see by comparing Figure 5.23 to Figure 5.20. The line in Figure 5.23 is a 
smoothed fit of the residuals. 

The second section of Figure 5.22 provides the model’s coefficients—
the slope, b1, and the y-intercept, b0—along with their respective standard 
deviations (Std. Error). The column t value and the column Pr(>|t|) are for 
the following t-tests.

slope H0: b1 = 0, HA: b1 ≠ 0

y-intercept H0: b0 = 0, HA:  b0 ≠ 0

The results of these t-tests provide convincing evidence that the slope is not 
zero, but no evidence that the y-intercept significantly differs from zero.

See Section 4F.1 for a review of the t-test.

Figure 5.22 The summary of R’s regression analysis. See the 
text for a discussion of how to interpret the information in the 
output’s three sections.

Figure 5.23 Example showing R’s plot of a regression model’s 
residual error.

> model=lm(signal~conc)
> summary(model)

Call:
lm(formula = signal ~ conc)

Residuals:
       1                 2         3           4                5               6 
-0.20857  0.08086  0.48029 -0.51029  0.29914 -0.14143 

Coe�cients:
                   Estimate       Std. Error      t value       Pr(>|t|)    
(Intercept)   0.2086        0.2919          0.715          0.514    
conc        120.7057         0.9641      125.205         2.44e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.4033 on 4 degrees of freedom
Multiple R-Squared: 0.9997, Adjusted R-squared: 0.9997 
F-statistic: 1.568e+04 on 1 and 4 DF,  p-value: 2.441e-08 
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The last section of the regression summary provides the standard devia-
tion about the regression (residual standard error), the square of the cor-
relation coefficient (multiple R-squared), and the result of an F-test on the 
model’s ability to explain the variation in the y values. For a discussion of 
the correlation coefficient and the F-test of a regression model, as well as 
their limitations, refer to the section on using Excel’s data analysis tools.

predicting tHe uncertainty in Ca given SSaMp

Unlike Excel, R includes a command for predicting the uncertainty in an 
analyte’s concentration, CA, given the signal for a sample, Ssamp. This com-
mand is not part of R’s standard installation. To use the command you need 
to install the “chemCal” package by entering the following command (note: 
you will need an internet connection to download the package).

> install.packages(“chemCal”)
After installing the package, you will need to load the functions into R 
using the following command. (note: you will need to do this step each time 
you begin a new R session as the package does not automatically load when you 
start R).

> library(“chemCal”)
The command for predicting the uncertainty in CA is inverse.predict, 

which takes the following form for an unweighted linear regression

inverse.predict(object, newdata, alpha = value)

where object is the object containing the regression model’s results, newdata 
is an object containing values for Ssamp, and value is the numerical value for 
the significance level. Let’s use this command to complete Example 5.11. 
First, we create an object containing the values of Ssamp

> sample = c(29.32, 29.16, 29.51)
and then we complete the computation using the following command

> inverse.predict(model, sample, alpha = 0.05)
 producing the result shown in Figure 5.24. The analyte’s concentration, CA, 
is given by the value $Prediction, and its standard deviation, sCA, is shown 
as $`Standard Error`. The value for $Confidence is the confidence interval, 
±tsCA, for the analyte’s concentration, and $`Confidence Limits` provides 
the lower limit and upper limit for the confidence interval for CA.

uSing r for a weigHted linear regreSSion

R’s command for an unweighted linear regression also allows for a weighted 
linear regression by including an additional argument, weights, whose value 
is an object containing the weights.

lm(y ~ x, weights  = object)

You need to install a package once, but 
you need to load the package each time 
you plan to use it. There are ways to con-
figure R so that it automatically loads 
certain packages; see An Introduction to R 
for more information (click here to view a 
PDF version of this document). 

See Section 4F.2 and Section 4F.3 for a 
review of the F-test.

http://cran.r-project.org/doc/manuals/R-intro.pdf
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Let’s use this command to complete Example 5.12. First, we need to create 
an object containing the weights, which in R are the reciprocals of the stan-
dard deviations in y, (syi)

–2. Using the data from Example 5.12, we enter
> syi=c(0.02, 0.02, 0.07, 0.13, 0.22, 0.33)
> w=1/syi^2

to create the object containing the weights. The commands
> modelw = lm(signal ~ conc, weights = w)

> summary(modelw)
generate the output shown in Figure 5.25. Any difference between the 
results shown here and the results shown in Example 5.12 are the result of 
round-off errors in our earlier calculations.

Figure 5.25 The summary of R’s regression analysis for 
a weighted linear regression. The types of information 
shown here is identical to that for the unweighted linear 
regression in Figure 5.22. 

Figure 5.24 Output from R’s command for predicting the ana-
lyte’s concentration, CA, from the sample’s signal, Ssamp.

> inverse.predict(model, sample, alpha = 0.05)
$Prediction
[1] 0.2412597

$`Standard Error`
[1] 0.002363588

$Con�dence
[1] 0.006562373

$`Con�dence Limits`
[1] 0.2346974 0.2478221

You may have noticed that this way of 
defining weights is different than that 
shown in equation 5.28. In deriving equa-
tions for a weighted linear regression, you 
can choose to normalize the sum of the 
weights to equal the number of points, or 
you can choose not to—the algorithm in 
R does not normalize the weights.

> modelw=lm(signal~conc, weights = w)
> summary(modelw)

Call:
lm(formula = signal ~ conc, weights = w)

Residuals:
     1           2           3           4            5           6 
-2.223  2.571  3.676  -7.129  -1.413  -2.864 

Coe�cients:
                      Estimate       Std. Error    t value   Pr(>|t|)    
(Intercept)   0.04446         0.08542        0.52       0.63    
conc         122.64111         0.93590    131.04       2.03e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 4.639 on 4 degrees of freedom
Multiple R-Squared: 0.9998, Adjusted R-squared: 0.9997 
F-statistic: 1.717e+04 on 1 and 4 DF,  p-value: 2.034e-08 

Practice Exercise 5.7
Use Excel to complete the 
regression analysis in Practice 
Exercise 5.4.

Click here to review your an-
swer to this exercise.
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5G Key Terms
external standard internal standard linear regression

matrix matching method of standard 
additions

multiple-point 
standardization

normal calibration curve primary standard reagent grade
residual error secondary standard serial dilution
single-point 
standardization

standard deviation about 
the regression total Youden blank

unweighted linear 
regression weighted linear regression

5H Chapter Summary
In a quantitative analysis we measure a signal, Stotal, and calculate the 
amount of analyte, nA or CA, using one of the following equations.

S k n Stotal A A reag= +

S k C Stotal A A reag= +

To obtain an accurate result we must eliminate determinate errors affect-
ing the signal, Stotal, the method’s sensitivity, kA, and the signal due to the 
reagents, Sreag. 

To ensure that we accurately measure Stotal, we calibrate our equipment 
and instruments. To calibrate a balance, for example, we a standard weight 
of known mass. The manufacturer of an instrument usually suggests ap-
propriate calibration standards and calibration methods.

To standardize an analytical method we determine its sensitivity. There 
are several standardization strategies, including external standards, the 
method of standard addition and internal standards. The most common 
strategy is a multiple-point external standardization, resulting in a nor-
mal calibration curve. We use the method of standard additions, in which 
known amounts of analyte are added to the sample, when the sample’s 
matrix complicates the analysis. When it is difficult to reproducibly handle 
samples and standards, we may choose to add an internal standard. 

Single-point standardizations are common, but are subject to greater 
uncertainty. Whenever possible, a multiple-point standardization is pre-
ferred, with results displayed as a calibration curve. A linear regression 
analysis can provide an equation for the standardization. 

A reagent blank corrects for any contribution to the signal from the 
reagents used in the analysis. The most common reagent blank is one in 
which an analyte-free sample is taken through the analysis. When a simple 
reagent blank does not compensate for all constant sources of determinate 
error, other types of blanks, such as the total Youden blank, can be used.

As you review this chapter, try to define  a 
key term in your own words. Check your 
answer by clicking on the key term, which 
will take you to the page where it was first 
introduced. Clicking on the key term 
there, will bring you back to this page so 
that you can continue with another key 
term.
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5I Problems

1. Describe how you would use a serial dilution to prepare 100 mL each 
of a series of standards with concentrations of 1.00×10–5, 1.00×10–4, 
1.00×10–3, and 1.00×10–2 M from a 0.100 M stock solution. Calcu-
late the uncertainty for each solution using a propagation of uncertainty, 
and compare to the uncertainty if you were to prepare each solution by 
a single dilution of the stock solution. You will find tolerances for dif-
ferent types of volumetric glassware and digital pipets in Table 4.2 and 
Table 4.3. Assume that the uncertainty in the stock solution’s molarity 
is ±0.002.

2. Three replicate determinations of Stotal for a standard solution that is 
10.0 ppm in analyte give values of 0.163, 0.157, and 0.161 (arbitrary 
units). The signal for the reagent blank is 0.002. Calculate the concen-
tration of analyte in a sample with a signal of 0.118.

3. A 10.00-g sample containing an analyte is transferred to a 250-mL 
volumetric flask and diluted to volume. When a 10.00 mL aliquot of 
the resulting solution is diluted to 25.00 mL it gives signal of 0.235 
(arbitrary units). A second 10.00-mL portion of the solution is spiked 
with 10.00 mL of a 1.00-ppm standard solution of the analyte and di-
luted to 25.00 mL. The signal for the spiked sample is 0.502. Calculate 
the weight percent of analyte in the original sample.

4. A 50.00 mL sample containing an analyte gives a signal of 11.5 (arbi-
trary units). A second 50 mL aliquot of the sample, which is spiked with 
1.00 mL of a 10.0-ppm standard solution of the analyte, gives a signal 
of 23.1. What is the analyte’s concentration in the original sample?

5. An appropriate standard additions calibration curve based on equation 
5.10 places Sspike×(Vo + Vstd) on the y-axis and Cstd×Vstd on the x-axis. 
Clearly explain why you can not plot Sspike on the y-axis and Cstd×[Vstd/
(Vo + Vstd)] on the x-axis. In addition, derive equations for the slope 
and y-intercept, and explain how you can determine the amount of 
analyte in a sample from the calibration curve.

6. A standard sample contains 10.0 mg/L of analyte and 15.0 mg/L of 
internal standard. Analysis of the sample gives signals for the analyte 
and internal standard of 0.155 and 0.233 (arbitrary units), respectively. 
Sufficient internal standard is added to a sample to make its concentra-
tion 15.0 mg/L Analysis of the sample yields signals for the analyte and 
internal standard of 0.274 and 0.198, respectively. Report the analyte’s 
concentration in the sample.
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7. For each of the pair of calibration curves shown in Figure 5.26, se-
lect the calibration curve using the more appropriate set of standards. 
Briefly explain the reasons for your selections. The scales for the x-axis 
and y-axis are the same for each pair.

8. The following data are for a series of external standards of Cd2+ buffered 
to a pH of 4.6.14

[Cd2+] (nM) 15.4 30.4 44.9 59.0 72.7 86.0
Stotal (nA) 4.8 11.4 18.2 25.6 32.3 37.7

14 Wojciechowski, M.; Balcerzak, J. Anal. Chim. Acta 1991, 249, 433–445.

Figure 5.26 Calibration curves to accom-
pany Problem 7.

Si
gn

al

CA

Si
gn

al

CA

Si
gn

al

CA

Si
gn

al

CA

Si
gn

al

CA

Si
gn

al

CA

(a)

(b)

(c)



200 Analytical Chemistry 2.0

(a) Use a linear regression to determine the standardization relationship 
and report confidence intervals for the slope and the y-intercept. 

(b) Construct a plot of the residuals and comment on their signifi-
cance.

At a pH of 3.7 the following data were recorded for the same set of 
external standards.

[Cd2+] (nM) 15.4 30.4 44.9 59.0 72.7 86.0

Stotal (nA) 15.0 42.7 58.5 77.0 101 118

(c) How much more or less sensitive is this method at the lower pH? 

(d) A single sample is buffered to a pH of 3.7 and analyzed for cadmium, 
yielding a signal of 66.3. Report the concentration of Cd2+ in the 
sample and its 95% confidence interval.

9. To determine the concentration of analyte in a sample, a standard ad-
ditions was performed. A 5.00-mL portion of sample was analyzed and 
then successive 0.10-mL spikes of a 600.0-mg/L standard of the analyte 
were added, analyzing after each spike. The following table shows the 
results of this analysis.

Vspike (mL) 0.00 0.10 0.20 0.30

Stotal (arbitrary units) 0.119 0.231 0.339 0.442

 Construct an appropriate standard additions calibration curve and use 
a linear regression analysis to determine the concentration of analyte in 
the original sample and its 95% confidence interval.

10. Troost and Olavsesn investigated the application of an internal stan-
dardization to the quantitative analysis of polynuclear aromatic hy-
drocarbons.15 The following results were obtained for the analysis of 
phenanthrene using isotopically labeled phenanthrene as an internal 
standard. Each solution was analyzed twice.

CA/CIS 0.50 1.25 2.00 3.00 4.00

SA/SIS
0.514
0.522

0.993
1.024

1.486
1.471

2.044
20.80

2.342
2.550

(a)  Determine the standardization relationship using a linear regression, 
and report confidence intervals for the slope and the y-intercept. 
Average the replicate signals for each standard before completing 
the linear regression analysis.

(b) Based on your results explain why the authors concluded that the 
internal standardization was inappropriate.

15 Troost, J. R.; Olavesen, E. Y. Anal. Chem. 1996, 68, 708–711.
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11. In Chapter 4 we used a paired t-test to compare two analytical methods 
used to independently analyze a series of samples of variable composi-
tion. An alternative approach is to plot the results for one method ver-
sus the results for the other method. If the two methods yield identical 
results, then the plot should have an expected slope, b1, of 1.00 and 
an expected y-intercept, b0, of 0.0. We can use a t-test to compare the 
slope and the y-intercept from a linear regression to the expected values. 
The appropriate test statistic for the y-intercept is found by rearranging 
equation 5.23.  

t
b

s

b

sb b
exp =

−
=

β0 0 0

0 0

 Rearranging equation 5.22 gives the test statistic for the slope.

t
b

s

b

sb b
exp

.
=

−
=

−β1 1 1

1 1

1 00

 Reevaluate the data in problem 25 from Chapter 4 using the same 
significance level as in the original problem.

12. Consider the following three data sets, each containing value of y for 
the same values of x.

Data Set 1 Data Set 2 Data Set 3
x y1 y2 y3

10.00 8.04 9.14 7.46
8.00 6.95 8.14 6.77

13.00 7.58 8.74 12.74
9.00 8.81 8.77 7.11

11.00 8.33 9.26 7.81
14.00 9.96 8.10 8.84

6.00 7.24 6.13 6.08
4.00 4.26 3.10 5.39

12.00 10.84 9.13 8.15
7.00 4.82 7.26 6.42
5.00 5.68 4.74 5.73

(a)  An unweighted linear regression analysis for the three data sets gives 
nearly identical results. To three significant figures, each data set 
has a slope of 0.500 and a y-intercept of 3.00. The standard devia-
tions in the slope and the y-intercept are 0.118 and 1.125 for each 

Although this is a common approach for 
comparing two analytical methods, it 
does violate one of the requirements for 
an unweighted linear regression—that in-
determinate errors affect y only. Because 
indeterminate errors affect both analytical 
methods, the result of unweighted linear 
regression is biased. More specifically, the 
regression underestimates the slope, b1,   
and overestimates the y-intercept, b0. We 
can minimize the effect of this bias by 
placing the more precise analytical meth-
od on the x-axis, by using more samples 
to increase the degrees of freedom, and 
by using samples that uniformly cover the 
range of concentrations. 

For more information, see Miller, J. C.; 
Miller, J. N. Statistics for Analytical Chem-
istry, 3rd ed. Ellis Horwood PTR Pren-
tice-Hall: New York, 1993. Alternative 
approaches are found in Hartman, C.; 
Smeyers-Verbeke, J.; Penninckx, W.; Mas-
sart, D. L. Anal. Chim. Acta 1997, 338, 
19–40, and Zwanziger, H. W.; Sârbu, C. 
Anal. Chem. 1998, 70, 1277–1280.
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data set. All three standard deviations about the regression are 1.24, 
and all three data regression lines have a correlation coefficients of 
0.816. Based on these results for a linear regression analysis, com-
ment on the similarity of the data sets.

(b) Complete a linear regression analysis for each data set and verify 
that the results from part (a) are correct. Construct a residual plot 
for each data set. Do these plots change your conclusion from part 
(a)? Explain.

(c) Plot each data set along with the regression line and comment on 
your results.

(d) Data set 3 appears to contain an outlier. Remove this apparent 
outlier and reanalyze the data using a linear regression. Comment 
on your result.

(e) Briefly comment on the importance of visually examining your 
data.

13. Fanke and co-workers evaluated a standard additions method for a vol-
tammetric determination of Tl.16 A summary of their results is tabu-
lated in the following table.

ppm Tl 
added Instrument Response (mA)

0.000 2.53 2.50 2.70 2.63 2.70 2.80 2.52
0.387 8.42 7.96 8.54 8.18 7.70 8.34 7.98
1.851 29.65 28.70 29.05 28.30 29.20 29.95 28.95
5.734 84.8 85.6 86.0 85.2 84.2 86.4 87.8

 Use a weighted linear regression to determine the standardization rela-
tionship for this data.

5J Solutions to Practice Exercises
Practice Exercise 5.1
Substituting the sample’s absorbance into the calibration equation and 
solving for CA give

Ssamp = 0.114 = 29.59 M–1 × CA + 0.015

CA = 3.35 × 10-3 M

For the one-point standardization, we first solve for kA

16 Franke, J. P.; de Zeeuw, R. A.; Hakkert, R. Anal. Chem. 1978, 50, 1374–1380.
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k
S
CA

std

std M
M= =

×
=

−
−0 0931

3 16 10
29 46

3
1.

.
.

and then use this value of kA to solve for CA.

C
S
kA
samp

A M
M= = = ×−

−0 114
29 46

3 87 101
3.

.
.

When using multiple standards, the indeterminate errors affecting the 
signal for one standard are partially compensated for by the indeterminate 
errors affecting the other standards. The standard selected for the one-
point standardization has a signal that is smaller than that predicted by the 
regression equation, which underestimates kA and overestimates CA.

Click here to return to the chapter.

Practice Exercise 5.2
We begin with equation 5.8

S k C
V
V

C
V
V

spike A A
f

o
std

f

std= +f p

rewriting it as

V
k C V

k C
V
V

0
f

A A o
A std

f

std#= + * 4

which is in the form of the linear equation

Y = y-intercept + slope × X

where Y is Sspike and X is Cstd×Vstd/Vf. The slope of the line, therefore, 
is kA, and the y-intercept is kACAVo/Vf. The x-intercept is the value of X 
when Y is zero, or

0= + ×{ }k C V
V

k xA A o

f
A -intercept

x

k C V
V

k
C V

V
-intercept

A A o

f

A

A o

f

=− =−

Click here to return to the chapter.

Practice Exercise 5.3
Using the calibration equation from Figure 5.7a, we find that the x-in-
tercept is
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x-intercept
mL

mL
-1

=− =−
0 1478

0 0854
1 731

.
.

.

Plugging this into the equation for the x-intercept and solving for CA gives 
the concentration of Mn2+ as

x-intercept mL
mL

mg/
=− =−

×
3 478

25 00
100 6

.
.

.
C A

LL
mg/L= 6 96.

For Figure 7b, the x-intercept is

x-intercept
mL

mL
-1

=− =−
0 1478

0 0425
3 478

.
.

.

and the concentration of Mn2+ is

x-intercept mL
mL

L
=− =−

×
=3 478

25 00
50 00

6.
.

.
C A ..96 mg/L

Click here to return to the chapter.

Practice Exercise 5.4
We begin by setting up a table to help us organize the calculation.

xi yi xiyi xi
2

0.000 0.00 0.000 0.000

1.55×10–3 0.050 7.750×10–5 2.403×10–6

3.16×10–3 0.093 2.939×10–4 9.986×10–6

4.74×10–3 0.143 6.778×10–4 2.247×10–5

6.34×10–3 0.188 1.192×10–3 4.020×10–5

7.92×10–3 0.236 1.869×10–3 6.273×10–5

Adding the values in each column gives

xi
i
∑ = 2.371×10–2    yi

i
∑ = 0.710   

 x yi i
i
∑ = 4.110×10–3    xi

i

2∑ = 1.278×10–4

Substituting these values into equation 5.17 and equation 5.18, we find 
that the slope and the y-intercept are

b1

3 26 4 110 10 2 371 10 0 710
6 1

=
× × − × ×

×

− −( . ) ( . ) ( . )
( .3378 10 2 371 10

29 57
4 2 2× − ×

=
− −) ( . )

.
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b0

20 710 29 57 2 371 10
6

0 0015=
− × ×

=
−. . ( . )

.

The regression equation is

Sstd = 29.57 × Cstd + 0.0015

To calculate the 95% confidence intervals, we first need to determine 
the standard deviation about the regression. The following table will 
help us organize the calculation.

xi yi ŷi ( ˆ )y yi i− 2

0.000 0.00 0.0015 2.250×10–6

1.55×10–3 0.050 0.0473 7.110×10–6

3.16×10–3 0.093 0.0949 3.768×10–6

4.74×10–3 0.143 0.1417 1.791×10–6

6.34×10–3 0.188 0.1890 9.483×10–7

7.92×10–3 0.236 0.2357 9.339×10–8

Adding together the data in the last column gives the numerator of 
equation 5.19 as 1.596×10–5. The standard deviation about the regres-
sion, therefore, is

sr =
×
−

= ×
−

−1 596 10
6 2

1 997 10
6

3.
.

Next, we need to calculate the standard deviations for the slope and the 
y-intercept using equation 5.20 and equation 5.21.

sb1

6 1 997 10
6 1 378 10 2 371 10

3 2

4
=

× ×
× × − ×

−

−

( . )
( . ) ( . −−

=
2 2

0 3007
)

.

sb0

1 997 10 1 378 10
6 1 378 10

3 2 4

4
=

× × ×
× ×

− −

−

( . ) ( . )
( . )) ( . )

.
− ×

= ×
−

−

2 371 10
1 441 10

2 2
3

The 95% confidence intervals are

β1 1 1
29 57 2 78 0 3007 29 57 0= ± = ± × = ±b tsb . ( . . ) . .M-1 885 M-1

β0 0
3

0
0 0015 2 78 1 441 10 0 0015= ± = ± × × =−b tsb . { . ( . } . ±± 0 0040.

With an average Ssamp of 0.114, the concentration of analyte, CA, is

C
S b

bA
samp

-1M
=

−
=

−
= ×0

1

0 114 0 0015
29 57

3 80 10
. .

.
. −−3 M
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The standard deviation in CA is

sCA
=

×
+ +

−−1 997 10
29 57

1
3

1
6

0 114 0 1183
29

3 2.
.

( . . )
( .. ) ( )

.
57

4 778 10
2

5

× ×
= × −

4.408 10-5

and the 95% confidence interval is

µ
A AAC CC ts= ± = × ± × ×

= ×

− −3 80 10 2 78 4 778 10

3 80

3 5. { . ( . )}

. 110 0 13 103 3− −± ×M M.

Click here to return to the chapter.

Practice Exercise 5.5
To create a residual plot, we need to calculate the residual error for each 
standard. The following table contains the relevant information.

xi yi ŷi y yi i− ˆ

0.000 0.00 0.0015 -0.0015

1.55×10–3 0.050 0.0473 0.0027

3.16×10–3 0.093 0.0949 -0.0019

4.74×10–3 0.143 0.1417 0.0013

6.34×10–3 0.188 0.1890 -0.0010

7.92×10–3 0.236 0.2357 0.0003

Figure 5.27 shows a plot of the resulting residual errors is shown here. The 
residual errors appear random and do not show any significant depen-
dence on the analyte’s concentration. Taken together, these observations 
suggest that our regression model is appropriate.

Click here to return to the chapter

Practice Exercise 5.6
Begin by entering the data into an Excel spreadsheet, following the format 
shown in Figure 5.15. Because Excel’s Data Analysis tools provide most of 
the information we need, we will use it here. The resulting output, which 
is shown in Figure 5.28, contains the slope and the y-intercept, along 
with their respective 95% confidence intervals. Excel does not provide a 
function for calculating the uncertainty in the analyte’s concentration, CA, 
given the signal for a sample, Ssamp. You must complete these calculations 
by hand. With an Ssamp. of 0.114, CA

C
S b

bA
samp

-1M
=

−
=

−
= ×0

1

0 114 0 0014
29 59

3 80 10
. .

.
. −−3 M

Figure 5.27 Plot of the residual errors for 
the data in Practice Exercise 5.5.
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The standard deviation in CA is

sCA
=

×
+ +

−−1 996 10
29 59

1
3

1
6

0 114 0 1183
29

3 2.
.

( . . )
( .. ) ( )

.
59

4 772 10
2

5

× ×
= × −

4.408 10-5

and the 95% confidence interval is

µ
A AAC CC ts= ± = × ± × ×

= ×

− −3 80 10 2 78 4 772 10

3 80

3 5. { . ( . )}

. 110 0 13 103 3− −± ×M M.

Click here to return to the chapter

Practice Exercise 5.7
Figure 5.29 shows an R session for this problem, including loading the 
chemCal package, creating objects to hold the values for Cstd, Sstd, and 
Ssamp. Note that for Ssamp, we do not have the actual values for the 
three replicate measurements. In place of the actual measurements, we 
just enter the average signal three times. This is okay because the calcula-
tion depends on the average signal and the number of replicates, and not 
on the individual measurements.

Click here to return to the chapter

Figure 5.28 Excel’s summary of the regression results for Practice Exercise 5.6.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99979366
R Square 0.99958737
Adjusted R Square0.99948421
Standard Error 0.00199602
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 0.0386054 0.0386054 9689.9103 6.3858E-08
Residual 4 1.5936E-05 3.9841E-06
Total 5 0.03862133

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.00139272 0.00144059 0.96677158 0.38840479 -0.00260699 0.00539242 -0.00260699 0.00539242
Cstd 29.5927329 0.30062507 98.437342 6.3858E-08 28.7580639 30.4274019 28.7580639 30.4274019
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Figure 5.29 R session for completing Practice Exercise 5.7.

> library("chemCal")
> conc=c(0, 1.55e-3, 3.16e-3, 4.74e-3, 6.34e-3, 7.92e-3)
> signal=c(0, 0.050, 0.093, 0.143, 0.188, 0.236)
> model=lm(signal~conc)
> summary(model)

Call:
lm(formula = signal ~ conc)

Residuals:
         1                       2                      3                    4                     5                     6 
-0.0013927   0.0027385  -0.0019058   0.0013377  -0.0010106   0.0002328 

Coe�cients:
                       Estimate      Std. Error     t value     Pr(>|t|)    
(Intercept)    0.001393    0.001441      0.967      0.388    
conc             29.592733    0.300625    98.437     6.39e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.001996 on 4 degrees of freedom
Multiple R-Squared: 0.9996, Adjusted R-squared: 0.9995 
F-statistic:  9690 on 1 and 4 DF,  p-value: 6.386e-08 

> samp=c(0.114, 0.114, 0.114)
> inverse.predict(model,samp,alpha=0.05)
$Prediction
[1] 0.003805234

$`Standard Error`
[1] 4.771723e-05

$Con�dence
[1] 0.0001324843

$`Con�dence Limits`
[1] 0.003672750 0.003937719




