SIGNIFICANT FIGURES CHEM 251 SDSU

SIGNIFICANT FIGURES

- The number of figures/digits reported in an analysis needs to reflect the accuracy of the instruments used.
- Reporting more figures/digits in a result gives the reader of the data incorrect information about the precision of the analysis.

DETERMINING SIGNIFICANT FIGURES

- The determination of significant figures is straightforward with analytical equipment, the last significant figure is the first figure of uncertainty in the reported value.
- With a buret, the first uncertain figure is the second decimal place. In photo that uncertainty would be 24.8<u>1</u> mL.

-	23	
	24	
	25	
	26	
	07	

SIGNIFICANT FIGURES

- If the uncertainty is available for all measurements in an analysis, the total (propagated) uncertainty of the analysis should be used to determine the last significant digit.
- Always use the absolute uncertainty in determining the last significant digit.
- The first digit of uncertainty is the last significant digit.
- For example: 23.4134 ± 0.0047 mL should be reported as 23.41<u>3</u> ± 0.00<u>5</u> mL

SAMPLE CALCULATION

A stock solution of HNO₃ has a concentration of 1.025 \pm 0.004 M. A 10.107 \pm 0.006 mL aliquot is taken from this solution and diluted to volume in a 250 mL \pm 0.04% volumetric flask.

What is the uncertainty and final concentration of HNO₃ in the 250 mL volumetric flask?