MONOPROTIC ACIDS & BASES CHEM 251 SDSU

ACIDS AND BASES

- An acid is a proton donor forms H₃O⁺
 HA + H₂O ⇒ A⁻ + H₃O⁺
- A base is a proton acceptor forms OH-B + H₂O \rightleftharpoons BH⁺ + OH⁻
- Vinegar: $CH_3CO_2H + H_2O \rightleftharpoons CH_3CO_2^- + H_3O^+$
- Ethylamine: $CH_3CH_2NH_2 + H_2O \rightleftharpoons CH_3CH_2NH_3^+ + OH^-$

- $B + H_2O \rightleftharpoons BH^+ + OH^ K_b = [BH^+][OH^-]/[B]$
- $HA + H_2O \rightleftharpoons H_3O^+ + A^ K_a = [H^+][A^-]/[HA]$

PH

- 14 = pH + pOH
- $-\log(K_w) = -\log[H^+] \times -\log[OH^-]$
- $K_w = 1 \times 10^{-14} = [H^+] \times [OH^-]$
- $H_2O \rightleftharpoons H^+ + OH^-$
- $pH = -log[H^+] \& pOH = -log[OH^-]$

STRONG ACIDS AND BASES Most acids/bases are considered weak - they do not dissociate fully in water. Only these select few dissociate fully and are strong

Strong Acids: HCI HBr HI H2SO4 HNO3 HCIO4 Strong Bases: LiOH NaOH KOH RbOH CsOH R4NOH

<u>''Not Weak'' Bases</u>: Mg(OH)₂ Ca(OH)₂ Sr(OH)₂ Ba(OH)₂

WEAK ACIDS AND BASES

- All weak acids and bases have dissociation constants, strong acids and bases do not have tabulated values.
- Weak acids/bases do not dissociate fully in solution some HA or B remain.
- The smaller the dissociation constant the weaker the acid/base the closer the pH of the solution is to being 7.

ACID/BASE DISSOCIATION CALCULATIONS

- $HA \rightleftharpoons H^+ + A^-$
- The dissociation reactions always proceed stoichiometrically. So if one mole of HA dissociates, you get one mole of H⁺ and one mole of A⁻.
- When doing calculations you must account for the lose of moles of HA and the increase in moles of H⁺ and A⁻.

KNOWING TO USE KA OR KB

- Depending on what species you have in solution you may need to use K_a or K_b to determine the pH of a solution.
- If the species you have produces H^+ as a product you need to use K_a .
- If the species you have produces OH⁻ as the product of the reaction you need to use K_b.

SAMPLE PROBLEM

What is the pH of a solution prepared by dissolving 0.458 g of aminobenzene into 200 mL of water?

Compound	Conjugate Acid	рК _а
acetic acid	CH ₃ COOH	4.757
adipic acid	но он	4.42 5.42
alanine	О +H ₃ N—CH-С—ОН СН ₃	2.348 (COOH) 9.867 (NH ₃)
aminobenzene	NH ₃ ⁺	4.601
	O ₃ S NH ₃ ⁺	
	СООН	
	NH ₃ +	
	ОН	