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between two signals, then the smallest detectable difference in the absolute  
amount or the relative amount of analyte is
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Suppose, for example, that our analytical signal is a measurement of mass 
using a balance whose smallest detectable increment is ±0.0001 g. If our 
method’s sensitivity is 0.200, then our method can conceivably detect a 
difference in mass of as little as
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For two methods with the same DSA, the method with the greater sensitiv-
ity—that is, the method with the larger kA—is better able to discriminate 
between smaller amounts of analyte. 

3D.4 Specificity and Selectivity

An analytical method is specific if its signal depends only on the analyte.4 
Although specificity is the ideal, few analytical methods are free from 
interferences. When an  interferent contributes to the signal, we expand 
equation 3.1 and equation 3.2 to include its contribution to the sample’s 
signal, Ssamp

S S S k n k nsamp A I A A I I= + = + 3.3
S S S k C k Csamp A I A A I I= + = + 3.4

where SI is the interferent’s contribution to the signal, kI is the interferent’s 
sensitivity, and nI and CI are the moles (or grams) and the concentration of 
interferent in the sample, respectively.

Selectivity is a measure of a method’s freedom from interferences.5 A 
method’s selectivity for an interferent relative to the analyte is defined by a 
selectivity coefficient, K A,I 

K k
k

,A I
A

I= 3.5

which may be positive or negative depending on the sign of kI and kA. The 
selectivity coefficient is greater than +1 or less than –1 when the method 
is more selective for the interferent than for the analyte. 

Determining the selectivity coefficient’s value is easy if we already know 
the values for kA and kI. As shown by Example 3.1, we also can deter-
mine KA,I by measuring Ssamp in the presence of and in the absence of the 
interferent.  

4 (a) Persson, B-A; Vessman, J. Trends Anal. Chem. 1998, 17, 117–119; (b) Persson, B-A; Vessman, 
J. Trends Anal. Chem. 2001, 20, 526–532.

5 Valcárcel, M.; Gomez-Hens, A.; Rubio, S. Trends Anal. Chem. 2001, 20, 386–393.

Although kA and kI usually are positive, 
they can be negative. For example, some 
analytical methods work by measuring the 
concentration of a species that remains 
after is reacts with the analyte. As the 
analyte’s concentration increases, the con-
centration of the species that produces the 
signal decreases, and the signal becomes 
smaller. If the signal in the absence of ana-
lyte is assigned a value of zero, then the 
subsequent signals are negative.
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Example 3.1
A method for the analysis of Ca2+ in water suffers from an interference in 
the presence of Zn2+. When the concentration of Ca2+ is 100 times greater 
than that of Zn2+, an analysis for Ca2+ has a relative error of +0.5%. What 
is the selectivity coefficient for this method?

SOLUTION

Since only relative concentrations are reported, we can arbitrarily assign ab-
solute concentrations. To make the calculations easy, we will let CCa = 100 
(arbitrary units) and CZn = 1. A relative error of +0.5% means the signal in 
the presence of Zn2+ is 0.5% greater than the signal in the absence of Zn2+. 
Again, we can assign values to make the calculation easier. If the signal for 
Cu2+ in the absence of Zn2+ is 100 (arbitrary units), then the signal in the 
presence of Zn2+ is 100.5.

The value of kCa is determined using equation 3.2
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In the presence of Zn2+ the signal is given by equation 3.4; thus

. ( )S k C k C k100 5 1 100 1samp Ca Ca Zn Zn Zn# #= = + = +  

Solving for kZn gives its value as 0.5. The selectivity coefficient is
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If you are unsure why the signal in the 
presence of zinc is 100.5, note that the 
percentage relative error for this problem 
is given by 
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#
-
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Solving gives an obtained result of 100.5.

Practice Exercise 3.1
Wang and colleagues describe a fluorescence method for the analysis of 
Ag+ in water. When analyzing a solution that contains 1.0 × 10-9 M Ag+ 
and 1.1× 10-7 M Ni2+, the fluorescence intensity (the signal) was +4.9% 
greater than that obtained for a sample of 1.0 × 10-9 M Ag+. What is 
KAg,Ni for this analytical method? The full citation for the data in this 
exercise is Wang, L.; Liang, A. N.; Chen, H.; Liu, Y.; Qian, B.; Fu, J. 
Anal. Chim. Acta 2008, 616, 170-176.
Click here to review your answer to this exercise.

A selectivity coefficient provides us with a useful way to evaluate an 
interferent’s potential effect on an analysis. Solving equation 3.5 for kI 

k K k,I A I A#= 3.6
substituting in equation 3.3 and equation 3.4, and simplifying gives

{ }S k n K n,samp A A A I A#= + 3.7
{ }S k C K C,samp A A A I I#= + 3.8
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An interferent will not pose a problem as long as the term KA,I × nI in equa-
tion 3.7 is significantly smaller than nA, or if KA,I × CI in equation 3.8 is 
significantly smaller than CA.

Example 3.2
Barnett and colleagues developed a method to determine the concentra-
tion of codeine in poppy plants.6 As part of their study they evaluated the 
effect of several interferents. For example, the authors found that equimo-
lar solutions of codeine and the interferent 6-methoxycodeine gave signals, 
respectively of 40 and 6 (arbitrary units). 
(a) What is the selectivity coefficient for the interferent, 6-methoxyco-

deine, relative to that for the analyte, codeine. 
(b) If we need to know the concentration of codeine with an accuracy of 

±0.50%, what is the maximum relative concentration of 6-methoxy-
codeine that we can tolerate?

SOLUTION

(a) The signals due to the analyte, SA, and the interferent, SI, are

S k C S k CA A A I I I= =

Solving these equations for kA and for kI, and substituting into equa-
tion 3.6 gives

/
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Because the concentrations of analyte and interferent are equimolar 
(CA = CI), the selectivity coefficient is

.K S
S
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(b) To achieve an accuracy of better than ±0.50% the term KA,I × CI in 
equation 3.8 must be less than 0.50% of CA; thus

.K C C0 0050,A I I A# ##

Solving this inequality for the ratio CI/CA and substituting in the 
value for KA,I from part (a) gives

.
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Therefore, the concentration of 6-methoxycodeine must be less than 
3.3% of codeine’s concentration.

When a method’s signal is the result of a chemical reaction—for exam-
ple, when the signal is the mass of a precipitate—there is a good chance that 
the method is not very selective and that it is susceptible to an interference. 
6 Barnett, N. W.; Bowser, T. A.; Geraldi, R. D.; Smith, B. Anal. Chim. Acta 1996, 318, 309–

317.
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Look back at Figure 1.1, which shows Fre-
senius’ analytical method for the determi-
nation of nickel in ores. The reason there 
are so many steps in this procedure is that 
precipitation reactions generally are not 
very selective. The method in Figure 1.2 
includes fewer steps because dimethylgly-
oxime is a more selective reagent. Even so, 
if an ore contains palladium, additional 
steps are needed to prevent the palladium 
from interfering. 

Practice Exercise 3.2
Mercury (II) also is an interferent in the fluorescence method for Ag+ 
developed by Wang and colleagues (see Practice Exercise 3.1 for the cita-
tion). The selectivity coefficient, KAg,Hg has a value of –1.0 × 10–3.  
(a) What is the significance of the selectivity coefficient’s negative sign?
(b) Suppose you plan to use this method to analyze solutions with con-

centrations of Ag+ no smaller than 1.0 nM . What is the maximum 
concentration of Hg2+ you can tolerate if your percentage relative 
errors must be less than ±1.0%?

Click here to review your answers to this exercise.

Problems with selectivity also are more likely when the analyte is present at 
a very low concentration.7

3D.5 Robustness and Ruggedness

For a method to be useful it must provide reliable results. Unfortunately, 
methods are subject to a variety of chemical and physical interferences that 
contribute uncertainty to the analysis. If a method is relatively free from 
chemical interferences, we can use it to analyze an analyte in a wide variety 
of sample matrices. Such methods are considered robust. 

Random variations in experimental conditions introduces uncertainty. 
If a method’s sensitivity, k, is too dependent on experimental conditions, 
such as temperature, acidity, or reaction time, then a slight change in any of 
these conditions may give a significantly different result. A rugged method 
is relatively insensitive to changes in experimental conditions.

3D.6 Scale of Operation

Another way to narrow the choice of methods is to consider three potential 
limitations: the amount of sample available for the analysis, the expected 
concentration of analyte in the samples, and the minimum amount of ana-
lyte that will produce a measurable signal. Collectively, these limitations 
define the analytical method’s scale of operations.

We can display the scale of operations visually (Figure 3.5) by plot-
ting the sample’s size on the x-axis and the analyte’s concentration on the 
y-axis.8 For convenience, we divide samples into macro (>0.1 g), meso (10 
mg–100 mg), micro (0.1 mg–10 mg), and ultramicro (<0.1 mg) sizes, and 
we divide analytes into major (>1% w/w), minor (0.01% w/w–1% w/w), 
trace (10-7% w/w–0.01% w/w), and ultratrace (<10–7% w/w) components. 
Together, the analyte’s concentration and the sample’s size provide a charac-
teristic description for an analysis. For example, in a microtrace analysis the 
7 Rodgers, L. B. J. Chem. Educ. 1986, 63, 3–6.
8 (a) Sandell, E. B.; Elving, P. J. in Kolthoff, I. M.; Elving, P. J., eds. Treatise on Analytical Chem-

istry, Interscience: New York, Part I, Vol. 1, Chapter 1, pp. 3–6; (b) Potts, L. W. Quantitative 
Analysis–Theory and Practice, Harper and Row: New York, 1987, pp. 12.
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sample weighs between 0.1 mg and 10 mg and contains a concentration of 
analyte between 10–7% w/w and 10–2% w/w.

The diagonal lines connecting the axes show combinations of sample 
size and analyte concentration that contain the same absolute mass of ana-
lyte. As shown in Figure 3.5, for example, a 1-g sample that is 1% w/w 
analyte has the same amount of analyte (10 mg) as a 100-mg sample that 
is 10% w/w analyte, or a 10-mg sample that is 100% w/w analyte. 

We can use Figure 3.5 to establish limits for analytical methods. If a 
method’s minimum detectable signal is equivalent to 10 mg of analyte, then 
it is best suited to a major analyte in a macro or meso sample. Extending the 
method to an analyte with a concentration of 0.1% w/w requires a sample 
of 10 g, which rarely is practical due to the complications of carrying such 
a large amount of material through the analysis. On the other hand, a small 
sample that contains a trace amount of analyte places significant restric-
tions on an analysis. For example, a 1-mg sample that is 10–4% w/w in 
analyte contains just 1 ng of analyte. If we isolate the analyte in 1 mL of 
solution, then we need an analytical method that reliably can detect it at a 
concentration of 1 ng/mL. 

Figure 3.5 Scale of operations for ana-
lytical methods (adapted from refer-
ences 8a and 8b). 
The shaded areas define different types 
of analyses. The boxed area, for exam-
ple, represents a microtrace analysis. 
The diagonal lines show combinations 
of sample size and analyte concentra-
tion that contain the same mass of 
analyte. The three filled circles (•), for 
example, indicate analyses that use 10 
mg of analyte. mass of sample (g)
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It should not surprise you to learn that a 
total analysis technique typically requires 
a macro or a meso sample that contains a 
major analyte. A concentration technique 
is particularly useful for a minor, trace, 
or ultratrace analyte in a macro, meso, or 
micro sample.
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3D.7 Equipment, Time, and Cost

Finally, we can compare analytical methods with respect to their equip-
ment needs, the time needed to complete an analysis, and the cost per 
sample. Methods that rely on instrumentation are equipment-intensive 
and may require significant operator training. For example, the graphite 
furnace atomic absorption spectroscopic method for determining lead in 
water requires a significant capital investment in the instrument and an 
experienced operator to obtain reliable results. Other methods, such as 
titrimetry, require less expensive equipment and less training.

The time to complete an analysis for one sample often is fairly similar 
from method-to-method. This is somewhat misleading, however, because 
much of this time is spent preparing samples, preparing reagents, and gath-
ering together equipment. Once the samples, reagents, and equipment are 
in place, the sampling rate may differ substantially. For example, it takes 
just a few minutes to analyze a single sample for lead using graphite fur-
nace atomic absorption spectroscopy, but several hours to analyze the same 
sample using gravimetry. This is a significant factor in selecting a method 
for a laboratory that handles a high volume of samples.

The cost of an analysis depends on many factors, including the cost of 
equipment and reagents, the cost of hiring analysts, and the number of 
samples that can be processed per hour. In general, methods that rely on 
instruments cost more per sample then other methods.

3D.8 Making the Final Choice

Unfortunately, the design criteria discussed in this section are not mutually 
independent.9 Working with smaller samples or improving selectivity often 
comes at the expense of precision. Minimizing cost and analysis time may 
decrease accuracy. Selecting a method requires carefully balancing the vari-
ous design criteria. Usually, the most important design criterion is accuracy, 
and the best method is the one that gives the most accurate result. When 
the need for a result is urgent, as is often the case in clinical labs, analysis 
time may become the critical factor.

In some cases it is the sample’s properties that determine the best meth-
od. A sample with a complex matrix, for example, may require a method 
with excellent selectivity to avoid interferences. Samples in which the ana-
lyte is present at a trace or ultratrace concentration usually require a con-
centration method. If the quantity of sample is limited, then the method 
must not require a large amount of sample.

Determining the concentration of lead in drinking water requires a 
method that can detect lead at the parts per billion concentration level. 
Selectivity is important because other metal ions are present at significantly 
higher concentrations. A method that uses graphite furnace atomic absorp-
tion spectroscopy is a common choice for determining lead in drinking 

9 Valcárcel, M.; Ríos, A. Anal. Chem. 1993, 65, 781A–787A.
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water because it meets these specifications. The same method is also useful 
for determining lead in blood where its ability to detect low concentrations 
of lead using a few microliters of sample is an important consideration.

3E Developing the Procedure
After selecting a method, the next step is to develop a procedure that accom-
plish our goals for the analysis. In developing a procedure we give attention 
to compensating for interferences, to selecting and calibrating equipment, 
to acquiring a representative sample, and to validating the method.

3E.1 Compensating for Interferences

A method’s accuracy depends on its selectivity for the analyte. Even the best 
method, however, may not be free from interferents that contribute to the 
measured signal. Potential interferents may be present in the sample itself 
or in the reagents used during the analysis. 

When the sample is free of interferents, the total signal, Stotal, is a sum 
of the signal due to the analyte, SA, and the signal due to interferents in 
the reagents, Sreag,

S S S k n Stotal A reag A A reag= + = + 3.9
S S S k C Stotal A reag A A reag= + = + 3.10

Without an independent determination of Sreag we cannot solve equation 
3.9 or 3.10 for the moles or concentration of analyte. 

To determine the contribution of Sreag in equations 3.9 and 3.10 we 
measure the signal for a method blank, a solution that does not contain 
the sample. Consider, for example, a procedure in which we dissolve a 0.1-g 
sample in a portion of solvent, add several reagents, and dilute to 100 mL 
with additional solvent. To prepare the method blank we omit the sample 
and dilute the reagents to 100 mL using the solvent. Because the analyte is 
absent, Stotal for the method blank is equal to Sreag. Knowing the value for 
Sreag makes it is easy to correct Stotal for the reagent’s contribution to the 
total signal; thus

( )S S S k ntotal reag A A A- = =

( )S S S k Ctotal reag A A A- = =

By itself, a method blank cannot compensate for an interferent that is 
part of the sample’s matrix. If we happen to know the interferent’s identity 
and concentration, then we can be add it to the method blank; however, 
this is not a common circumstance and we must, instead, find a method 
for separating the analyte and interferent before continuing the analysis. 

A method blank also is known as a reagent 
blank.

When the sample is a liquid, or is in so-
lution, we use an equivalent volume of 
an inert solvent as a substitute for the 
sample. 
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3E.2 Calibration

A simple definition of a quantitative analytical method is that it is a mecha-
nism for converting a measurement, the signal, into the amount of analyte 
in a sample. Assuming we can correct for interferents, a quantitative analysis 
is nothing more than solving equation 3.1 or equation 3.2 for nA or for CA.

To solve these equations we need the value of kA. For a total analysis 
method usually we know the value of kA because it is defined by the stoi-
chiometry of the chemical reactions responsible for the signal. For a con-
centration method, however, the value of kA usually is a complex function 
of experimental conditions. A Calibration is the process of experimentally 
determining the value of kA by measuring the signal for one or more stan-
dard samples, each of which contains a known concentration of analyte. 
With a single standard we can calculate the value of kA using equation 3.1 
or equation 3.2. When using several standards with different concentra-
tions of analyte, the result is best viewed visually by plotting SA versus the 
concentration of analyte in the standards. Such a plot is known as a cali-
bration curve, an example of which is shown in Figure 3.6. 

3E.3 Sampling

Selecting an appropriate method and executing it properly helps us ensure 
that our analysis is accurate. If we analyze the wrong sample, however, then 
the accuracy of our work is of little consequence. 

A proper sampling strategy ensures that our samples are representative 
of the material from which they are taken. Biased or nonrepresentative sam-
pling, and contaminating samples during or after their collection are two 
examples of sampling errors that can lead to a significant error in accuracy. 
It is important to realize that sampling errors are independent of errors in 
the analytical method. As a result, we cannot correct a sampling error in 
the laboratory by, for example, evaluating a reagent blank. 

Methods for effecting this separation are 
discussed in Chapter 7.
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Figure 3.6 Example of a calibra-
tion curve. The filled circles (•) are 
the results for five standard sam-
ples, each with a different concen-
trations of analyte, and the line is 
the best fit to the data determined 
by a linear regression analysis. See 
Chapter 5 for a further discussion 
of calibration curves and an expla-
nation of linear regression.

Chapter 7 provides a more detailed discus-
sion of sampling, including strategies for 
obtaining representative samples.
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3E.4 Validation

If we are to have confidence in our procedure we must demonstrate that it 
can provide acceptable results, a process we call validation. Perhaps the 
most important part of validating a procedure is establishing that its preci-
sion and accuracy are appropriate for the problem we are trying to solve. We 
also ensure that the written procedure has sufficient detail so that different 
analysts or laboratories will obtain comparable results. Ideally, validation 
uses a standard sample whose composition closely matches the samples we 
will analyze. In the absence of appropriate standards, we can evaluate ac-
curacy by comparing results to those obtained using a method of known 
accuracy. 

3F Protocols
Earlier we defined a protocol as a set of stringent written guidelines that 
specify an exact procedure that we must follow if an agency is to accept the 
results of our analysis. In addition to the considerations that went into the 
procedure’s design, a protocol also contains explicit instructions regarding 
internal and external quality assurance and quality control (QA/QC) proce-
dures.10 The goal of internal QA/QC is to ensure that a laboratory’s work 
is both accurate and precise. External QA/QC is a process in which an 
external agency certifies a laboratory.

As an example, let’s outline a portion of the Environmental Protection 
Agency’s protocol for determining trace metals in water by graphite furnace 
atomic absorption spectroscopy as part of its Contract Laboratory Program 
(CLP). The CLP protocol (see Figure 3.7) calls for an initial calibration 
using a method blank and three standards, one of which is at the detec-
tion limit. The resulting calibration curve is verified by analyzing initial 
calibration verification (ICV) and initial calibration blank (ICB) samples. 
The lab’s result for the ICV sample must fall within ±10% of its expected 
concentration. If the result is outside this limit the analysis is stopped and 
the problem identified and corrected before continuing.

After a successful analysis of the ICV and ICB samples, the lab reverifies 
the calibration by analyzing a continuing calibration verification (CCV) 
sample and a continuing calibration blank (CCB). Results for the CCV also 
must be within ±10% of its expected concentration. Again, if the lab’s result 
for the CCV is outside the established limits, the analysis is stopped, the 
problem identified and corrected, and the system recalibrated as described 
above. Additional CCV and the CCB samples are analyzed before the first 
sample and after the last sample, and between every set of ten samples. If 
the result for any CCV or CCB sample is unacceptable, the results for the 
last set of samples are discarded, the system is recalibrated, and the samples 
reanalyzed. By following this protocol, each result is bound by successful 

10 (a) Amore, F. Anal. Chem. 1979, 51, 1105A–1110A; (b) Taylor, J. K. Anal. Chem. 1981, 53, 
1588A–1593A.

You will find more details about validating 
analytical methods in Chapter 14.



56 Analytical Chemistry 2.1

checks on the calibration. Although not shown in Figure 3.7, the protocol 
also contains instructions for analyzing duplicate or split samples, and for 
using spike tests to verify accuracy.

3G The Importance of Analytical Methodology
The importance of the issues raised in this chapter is evident if we examine 
environmental monitoring programs. The purpose of a monitoring pro-
gram is to determine the present status of an environmental system, and to 
assess long term trends in the system’s health. These are broad and poorly 
defined goals. In many cases, an environmental monitoring program begins 
before the essential questions are known. This is not surprising since it is 
difficult to formulate questions in the absence of results. Without careful 
planning, however, a poor experimental design may result in data that has 
little value.

Figure 3.7 Schematic diagram showing a portion of the EPA’s 
protocol for determining trace metals in water using graphite 
furnace atomic absorption spectrometry.
The abbreviations are ICV: initial calibration verification; 
ICB: initial calibration blank; CCV: continuing calibration 
verification; CCB: continuing calibration blank. No
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These concerns are illustrated by the Chesapeake Bay Monitoring Pro-
gram. This research program, designed to study nutrients and toxic pollut-
ants in the Chesapeake Bay, was initiated in 1984 as a cooperative venture 
between the federal government, the state governments of Maryland, Vir-
ginia, and Pennsylvania, and the District of Columbia. A 1989 review of the 
program highlights the problems common to many monitoring programs.11

At the beginning of the Chesapeake Bay monitoring program, little at-
tention was given to selecting analytical methods, in large part because the 
eventual use of the data was not yet specified. The analytical methods ini-
tially chosen were standard methods already approved by the Environmen-
tal Protection Agency (EPA). In many cases these methods were not useful 
because they were designed to detect pollutants at their legally mandated 
maximum allowed concentrations. In unpolluted waters, however, the con-
centrations of these contaminants often are well below the detection limit 
of the EPA methods. For example, the detection limit for the EPA approved 
standard method for phosphate was 7.5 ppb. Since the actual phosphate 
concentrations in Chesapeake Bay were below the EPA method’s detection 
limit, it provided no useful information. On the other hand, the detection 
limit for a non-approved variant of the EPA method, a method routinely 
used by chemical oceanographers, was 0.06 ppb, a more realistic detec-
tion limit for their samples. In other cases, such as the elemental analysis 
for particulate forms of carbon, nitrogen and phosphorous, EPA approved 
procedures provided poorer reproducibility than nonapproved methods.

3H Key Terms

accuracy analysis analyte
calibration calibration curve concentration techniques
detection limit determination interferent
matrix measurement method
method blank precision procedure
protocol QA/QC robust
rugged selectivity selectivity coefficient
sensitivity signal specificity
technique total analysis techniques validation

3I Chapter Summary
Every discipline has its own vocabulary and your success in studying ana-
lytical chemistry will improve if you master this vocabulary. Be sure you 
understand the difference between an analyte and its matrix, between a 
technique and a method, between a procedure and a protocol, and between 
a total analysis technique and a concentration technique.

11 D’Elia, C. F.; Sanders, J. G.; Capone, D. G. Envrion. Sci. Technol. 1989, 23, 768–774.
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In selecting an analytical method we consider criteria such as accu-
racy, precision, sensitivity, selectivity, robustness, ruggedness, the amount 
of available sample, the amount of analyte in the sample, time, cost, and 
the availability of equipment. These criteria are not mutually independent, 
and often it is necessary to find an acceptable balance between them.

In developing a procedure or protocol, we give consideration to com-
pensating for interferences, calibrating the method, obtaining an appropri-
ate sample, and validating the analysis. Poorly designed procedures and 
protocols produce results that are insufficient to meet the needs of the 
analysis.

3J Problems

1. When working with a solid sample, often it is necessary to bring the 
analyte into solution by digesting the sample with a suitable solvent. 
Any remaining solid impurities are removed by filtration before con-
tinuing with the analysis. In a typical total analysis method, the proce-
dure might read

 After digesting the sample in a beaker using approximately 25 mL 
of solvent, remove any solid impurities that remain by passing the 
solution the analyte through filter paper, collecting the filtrate in a 
clean Erlenmeyer flask. Rinse the beaker with several small portions 
of solvent, passing these rinsings through the filter paper and col-
lecting them in the same Erlenmeyer flask. Finally, rinse the filter 
paper with several portions of solvent, collecting the rinsings in the 
same Erlenmeyer flask.

 For a typical concentration method, however, the procedure might 
state

 After digesting the sample in a beaker using 25.00 mL of solvent, 
remove any solid impurities by filtering a portion of the solution 
containing the analyte. Collect and discard the first several mL of 
filtrate before collecting a sample of 5.00 mL for further analysis.

 Explain why these two procedures are different.

2. A certain concentration method works best when the analyte’s concen-
tration is approximately 10 ppb. 

(a) If the method requires a sample of 0.5 mL, about what mass of 
analyte is being measured? 

(b) If the analyte is present at 10% w/v, how would you prepare the 
sample for analysis?  

(c) Repeat for the case where the analyte is present at 10% w/w. 
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(d) Based on your answers to parts (a)–(c), comment on the method’s 
suitability for the determination of a major analyte.

3. An analyst needs to evaluate the potential effect of an interferent, I, on 
the quantitative analysis for an analyte, A. She begins by measuring the 
signal for a sample in which the interferent is absent and the analyte is 
present with a concentration of 15 ppm, obtaining an average signal of 
23.3 (arbitrary units). When she analyzes a sample in which the analyte 
is absent and the interferent is present with a concentration of 25 ppm, 
she obtains an average signal of 13.7. 

(a) What is the sensitivity for the analyte?  

(b) What is the sensitivity for the interferent?  

(c) What is the value of the selectivity coefficient?  

(d) Is the method more selective for the analyte or the interferent?  

(e) What is the maximum concentration of interferent relative to that 
of the analyte if the error in the analysis is to be less than 1%?

4. A sample is analyzed to determine the concentration of an analyte. Un-
der the conditions of the analysis the sensitivity is 17.2 ppm–1. What is 
the analyte’s concentration if Stotal is 35.2 and Sreag is 0.6?

5. A method for the analysis of Ca2+ in water suffers from an interference 
in the presence of Zn2+. When the concentration of Ca2+ is 50 times 
greater than that of Zn2+, an analysis for Ca2+ gives a relative error of 

–2.0%. What is the value of the selectivity coefficient for this method?

6. The quantitative analysis for reduced glutathione in blood is compli-
cated by many potential interferents. In one study, when analyzing a 
solution of 10.0 ppb glutathione and 1.5 ppb ascorbic acid, the signal 
was 5.43 times greater than that obtained for the analysis of 10.0 ppb 
glutathione.12 What is the selectivity coefficient for this analysis? The 
same study found that analyzing a solution of 3.5×102 ppb methio-
nine and 10.0 ppb glutathione gives a signal that is 0.906 times less 
than that obtained for the analysis of 10.0 ppb glutathione. What is 
the selectivity coefficient for this analysis? In what ways do these inter-
ferents behave differently?

7. Oungpipat and Alexander described a method for determining the con-
centration of glycolic acid (GA) in a variety of samples, including physi-
ological fluids such as urine.13 In the presence of only GA, the signal is

12 Jiménez-Prieto, R.; Velasco, A.; Silva, M; Pérez-Bendito, D. Anal. Chem. Acta 1992, 269, 273–
279.

13  Oungpipat, W.; Alexander, P. W. Anal. Chim. Acta 1994, 295, 36–46.
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Ssamp,1 = kGACGA

 and in the presence of both glycolic acid and ascorbic acid (AA), the 
signal is

Ssamp,2 = kGACGA + kAACAA

 When the concentration of glycolic acid is 1.0 × 10–4 M and the con-
centration of ascorbic acid is 1.0 × 10–5 M, the ratio of their signals is

.S
S 1 44

,

,

samp

samp

2

1
=

(a) Using the ratio of the two signals, determine the value of the selec-
tivity ratio KGA,AA.

(b) Is the method more selective toward glycolic acid or ascorbic acid?  

(c) If the concentration of ascorbic acid is 1.0 × 10–5 M, what is the 
smallest concentration of glycolic acid that can be determined such 
that the error introduced by failing to account for the signal from 
ascorbic acid is less than 1%?

8. Ibrahim and co-workers developed a new method for the quantitative 
analysis of hypoxanthine, a natural compound of some nucleic acids.14 
As part of their study they evaluated the method’s selectivity for hy-
poxanthine in the presence of several possible interferents, including 
ascorbic acid. 

(a) When analyzing a solution of 1.12 × 10–6 M hypoxanthine the au-
thors obtained a signal of 7.45 × 10–5 amps. What is the sensitivity 
for hypoxanthine? You may assume the signal has been corrected 
for the method blank. 

(b) When a solution containing 1.12 × 10–6 M hypoxanthine and 
6.5 × 10–5 M ascorbic acid is analyzed a signal of 4.04 × 10–5 amps 
is obtained. What is the selectivity coefficient for this method?  

(c) Is the method more selective for hypoxanthine or for ascorbic 
acid?  

(d) What is the largest concentration of ascorbic acid that may be pres-
ent if a concentration of 1.12 × 10–6 M hypoxanthine is to be de-
termined within 1.0%?

9. Examine a procedure from Standard Methods for the Analysis of Waters 
and Wastewaters (or another manual of standard analytical methods) 
and identify the steps taken to compensate for interferences, to cali-

14  Ibrahim, M. S.; Ahmad, M. E.; Temerk, Y. M.; Kaucke, A. M. Anal. Chim. Acta 1996, 328, 
47–52.



61Chapter 3 The Vocabulary of Analytical Chemistry

brate equipment and instruments, to standardize the method, and to 
acquire a representative sample.

3K Solutions to Practice Exercises
Practice Exercise 3.1
Because the signal for Ag+ in the presence of Ni2+ is reported as a relative 
error, we will assign a value of 100 as the signal for 1 × 10–9 M Ag+. With a 
relative error of +4.9%, the signal for the solution of 1 × 10–9 M Ag+ and 
1.1 × 10–7 M Ni2+ is 104.9. The sensitivity for Ag+ is determined using the 
solution that does not contain Ni2+; thus

.k C
S

1 10
100 1 0 10M M9

11 1
Ag

Ag

Ag

#
#= = =-

-

Substituting into equation 3.4 values for kAg, Ssamp , and the concentrations 
of Ag+ and Ni2+

. ( . ) ( . ) ( . )k104 9 1 0 10 1 0 10 1 1 10M M MNi
11 1 9 7# # # # #= +- - -

and solving gives kNi as 4.5 × 107 M–1. The selectivity coefficient is

.
. .K k

k
1 0 10
4 5 10 4 5 10M

M
11 1

7 1
4

Ag,Ni
Ag

Ni

#
# #= = =-

-
-

Click here to return to the chapter.

Practice Exercise 3.2
(a) A negative value for KAg,Hg means that the presence of Hg2+ decreases 
the signal from Ag+.
(b) In this case we need to consider an error of –1%, since the effect of Hg2+ 
is to decrease the signal from Ag+. To achieve this error, the term KA,I × CI 
in equation 3.8 must be less than -1% of CA; thus

.K C C0 01Ag,Hg Hg Ag# #=-

Substituting in known values for KAg,Hg and CAg, we find that the maxi-
mum concentration of Hg2+ is 1.0 × 10-8 M.
Click here to return to the chapter.
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Evaluating Analytical Data
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4A Characterizing Measurements and Results
4B Characterizing Experimental Errors
4C Propagation of Uncertainty
4D The Distribution of Measurements and Results
4E Statistical Analysis of Data
4F Statistical Methods for Normal Distributions
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4H Using Excel and R to Analyze Data
4I Key Terms
4J Chapter Summary
4K Problems
4L Solutions to Practice Exercises

When we use an analytical method we make three separate evaluations of experimental error. 
First, before we begin the analysis we evaluate potential sources of errors to ensure they will 
not adversely effect our results. Second, during the analysis we monitor our measurements to 
ensure that errors remain acceptable. Finally, at the end of the analysis we evaluate the quality 
of the measurements and results, and compare them to our original design criteria. This chapter 
provides an introduction to sources of error, to evaluating errors in analytical measurements, 
and to the statistical analysis of data.
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4A Characterizing Measurements and Results
Let’s begin by choosing a simple quantitative problem that requires a single 
measurement: What is the mass of a penny? You probably recognize that 
our statement of the problem is too broad. For example, are we interested 
in the mass of a United States penny or of a Canadian penny, or is the dif-
ference relevant? Because a penny’s composition and size may differ from 
country to country, let’s narrow our problem to pennies from the United 
States. 

There are other concerns we might consider. For example, the United 
States Mint produces pennies at two locations (Figure 4.1). Because it seems 
unlikely that a penny’s mass depends on where it is minted, we will ignore 
this concern. Another concern is whether the mass of a newly minted penny 
is different from the mass of a circulating penny. Because the answer this 
time is not obvious, let’s further narrow our question and ask “What is the 
mass of a circulating United States Penny?” 

A good way to begin our analysis is to gather some preliminary data. 
Table 4.1 shows masses for seven pennies collected from my change jar. In 
examining this data we see that our question does not have a simple answer. 
That is, we can not use the mass of a single penny to draw a specific conclu-
sion about the mass of any other penny (although we might conclude that 
all pennies weigh at least 3 g). We can, however, characterize this data by 
reporting the spread of the individual measurements around a central value. 

4A.1 Measures of Central Tendency

One way to characterize the data in Table 4.1 is to assume that the masses of 
individual pennies are scattered randomly around a central value that is the 
best estimate of a penny’s expected, or “true” mass. There are two common 
ways to estimate central tendency: the mean and the median. 

MEAN

The mean, X , is the numerical average for a data set. We calculate the 
mean by dividing the sum of the individual values by the size of the data set

Figure 4.1 An uncirculated 2005 
Lincoln head penny. The “D” be-
low the date indicates that this 
penny was produced at the United 
States Mint at Denver, Colorado. 
Pennies produced at the Philadel-
phia Mint do not have a letter be-
low the date. Source: United States 
Mint image (www.usmint.gov).

Table 4.1 Masses of Seven Circulating U. S. Pennies
Penny Mass (g)

1 3.080
2 3.094
3 3.107
4 3.056
5 3.112
6 3.174
7 3.198
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X n
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i

n

1= =

/

where Xi is the ith measurement, and n is the size of the data set.

Example 4.1
What is the mean for the data in Table 4.1?

SOLUTION

To calculate the mean we add together the results for all measurements

3.080 + 3.094 + 3.107 + 3.056 + 3.112 + 3.174 + 3.198 = 21.821 g

and divide by the number of measurements
.

.X 7
21 821

3 117
g

g= =

The mean is the most common estimate of central tendency. It is not a 
robust estimate, however, because a single extreme value—one much larger 
or much smaller than the remainder of the data— influences strongly the 
mean’s value.1 For example, if we accidently record the third penny’s mass 
as 31.07 g instead of 3.107 g, the mean changes from 3.117 g to 7.112 g!

MEDIAN

The median, XN , is the middle value when we order our data from the 
smallest to the largest value. When the data has an odd number of values, 
the median is the middle value. For an even number of values, the median 
is the average of the n/2 and the (n/2) + 1 values, where n is the size of the 
data set.

Example 4.2
What is the median for the data in Table 4.1?

SOLUTION

To determine the median we order the measurements from the smallest to 
the largest value

3.056 3.080 3.094 3.107 3.112 3.174 3.198

Because there are seven measurements, the median is the fourth value in 
the ordered data; thus, the median is 3.107 g.

As shown by Examples 4.1 and 4.2, the mean and the median provide 
similar estimates of central tendency when all measurements are compara-
ble in magnitude. The median, however, is a more robust estimate of central 
tendency because it is less sensitive to measurements with extreme values. 

1 Rousseeuw, P. J. J. Chemom. 1991, 5, 1–20.

An estimate for a statistical parameter is 
robust if its value is not affected too much 
by an unusually large or an unusually 
small measurement. 

When n = 5, the median is the third value 
in the ordered data set; for n = 6, the me-
dian is the average of the third and fourth 
members of the ordered data set.
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For example, if we accidently record the third penny’s mass as 31.07 g in-
stead of 3.107 g, the median’s value changes from 3.107 g to 3.112 g.

4A.2 Measures of Spread

If the mean or the median provides an estimate of a penny’s expected mass, 
then the spread of individual measurements about the mean or median 
provides an estimate of the difference in mass among pennies or of the 
uncertainty in measuring mass with a balance. Although we often define 
the spread relative to a specific measure of central tendency, its magnitude 
is independent of the central value. Although shifting all measurements in 
the same direction by adding or subtracting a constant value changes the 
mean or median, it does not change the spread. There are three common 
measures of spread: the range, the standard deviation, and the variance.

RANGE

The range, w, is the difference between a data set’s largest and smallest 
values.

w = Xlargest – Xsmallest

The range provides information about the total variability in the data set, 
but does not provide information about the distribution of individual val-
ues. The range for the data in Table 4.1 is

w = 3.198 g – 3.056 g = 0.142 g

STANDARD DEVIATION

The standard deviation, s, describes the spread of individual values about 
their mean, and is given as

( )
s n

X X

1
i

i

n
2

1= -

-
=

/ 4.1

where Xi is one of n individual values in the data set, and X  is the data set’s  
mean value. Frequently, we report the relative standard deviation, sr, instead 
of the absolute standard deviation.

s X
s

r =

The percent relative standard deviation, %sr, is sr × 100.

Example 4.3
Report the standard deviation, the relative standard deviation, and the 
percent relative standard deviation for the data in Table 4.1?

SOLUTION 
To calculate the standard deviation we first calculate the difference between 
each measurement and the data set’s mean value (3.117), square the result-

Problem 13 at the end of the chapter asks 
you to show that this is true.

As you might guess from this equation, the 
range is not a robust estimate of spread.

The relative standard deviation is impor-
tant because it allows for a more mean-
ingful comparison between data sets when 
the individual measurements differ sig-
nificantly in magnitude. Consider again 
the data in Table 4.1. If we multiply each 
value by 10, the absolute standard devia-
tion will increase by 10 as well; the relative 
standard deviation, however, is the same.
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ing differences, and add them together to find the numerator of equation 
4.1.

( . . ) ( . ) .
( . . ) ( . ) .
( . . ) ( . ) .
( . . ) ( . ) .
( . . ) ( . ) .
( . . ) ( . ) .
( . . ) ( . ) .

.

3 080 3 117 0 037 0 001369
3 094 3 117 0 023 0 000529
3 107 3 117 0 010 0 000100
3 056 3 117 0 061 0 003721
3 112 3 117 0 005 0 000025
3 174 3 117 0 057 0 003249
3 198 3 117 0 081 0 006561

0 015554

2 2

2 2

2 2

2 2

2 2

2 2

2 2

- = - =

- = - =

- = - =

- = - =

- = - =

- = + =

- = + =

Next, we divide this sum of squares by n – 1, where n is the number of 
measurements, and take the square root.

. .s 7 1
0 015554 0 051 g= - =

Finally, the relative standard deviation and percent relative standard devia-
tion are

     .
.

.s 3 117
0 051

0 016g
g

r = =        

%sr = (0.016) × 100% = 1.6%

It is much easier to determine the standard deviation using a scientific 
calculator with built in statistical functions.

VARIANCE

Another common measure of spread is the variance, which is the square 
of the standard deviation. We usually report a data set’s standard deviation, 
rather than its variance, because the mean value and the standard deviation 
share the same unit. As we will see shortly, the variance is a useful measure 
of spread because its values are additive.

Example 4.4
What is the variance for the data in Table 4.1?

SOLUTION

The variance is the square of the absolute standard deviation. Using the 
standard deviation from Example 4.3 gives the variance as

s2 = (0.051)2 = 0.0026

Many scientific calculators include two 
keys for calculating the standard devia-
tion. One key calculates the standard de-
viation for a data set of n samples drawn 
from a larger collection of possible sam-
ples, which corresponds to equation 4.1. 
The other key calculates the standard 
deviation for all possible samples. The 
latter is known as the population’s stan-
dard deviation, which we will cover later 
in this chapter. Your calculator’s manual 
will help you determine the appropriate 
key for each.

For obvious reasons, the numerator of 
equation 4.1 is called a sum of squares.
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4B Characterizing Experimental Errors
Characterizing a penny’s mass using the data in Table 4.1 suggests two ques-
tions. First, does our measure of central tendency agree with the penny’s 
expected mass? Second, why is there so much variability in the individual 
results? The first of these questions addresses the accuracy of our measure-
ments and the second addresses the precision of our measurements. In this 
section we consider the types of experimental errors that affect accuracy 
and precision. 

4B.1 Errors That Affect Accuracy

Accuracy is how close a measure of central tendency is to its expected value, 
m. We express accuracy either as an absolute error, e

e X n= - 4.2
or as a percent relative error, %er.

e X 100% r #n
n

=
- 4.3

Although equation 4.2 and equation 4.3 use the mean as the measure of 
central tendency, we also can use the median.

We identify as determinate an error that affects the accuracy of an analy-
sis. Each source of a determinate error has a specific magnitude and sign. 
Some sources of determinate error are positive and others are negative, and 
some are larger in magnitude and others are smaller in magnitude. The 
cumulative effect of these determinate errors is a net positive or negative 
error in accuracy. 

We assign determinate errors into four categories—sampling errors, 
method errors, measurement errors, and personal errors—each of which 
we consider in this section.

Practice Exercise 4.1
The following data were collected as part of a quality control study for 
the analysis of sodium in serum; results are concentrations of Na+ in 
mmol/L.

140     143     141     137      132     157     143     149     118     145
Report the mean, the median, the range, the standard deviation, and the 
variance for this data. This data is a portion of a larger data set from An-
drew, D. F.; Herzberg, A. M. Data: A Collection of Problems for the Student 
and Research Worker, Springer-Verlag:New York, 1985, pp. 151–155.
Click here to review your answer to this exercise.

The convention for representing a statisti-
cal parameter is to use a Roman letter for 
a value calculated from experimental data, 
and a Greek letter for its corresponding 
expected value. For example, the experi-
mentally determined mean is X , and its 
underlying expected value is n. Likewise, 
the standard deviation by experiment is s, 
and the underlying expected value is v.

It is possible, although unlikely, that the 
positive and negative determinate errors 
will offset each other, producing a result 
with no net error in accuracy.
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SAMPLING ERRORS 

A determinate sampling error occurs when our sampling strategy does 
not provide a us with a representative sample. For example, if we monitor 
the environmental quality of a lake by sampling from a single site near a 
point source of pollution, such as an outlet for industrial effluent, then 
our results will be misleading. To determine the mass of a U. S. penny, our 
strategy for selecting pennies must ensure that we do not include pennies 
from other countries. 

METHOD ERRORS  

In any analysis the relationship between the signal, Stotal, and the absolute 
amount of analyte, nA, or the analyte’s concentration, CA, is

S k n Stotal A A mb= + 4.4
S k C Stotal A A mb= + 4.5

where kA is the method’s sensitivity for the analyte and Smb is the signal from 
the method blank. A method error exists when our value for kA or for Smb 
is in error. For example, a method in which Stotal is the mass of a precipitate 
assumes that k is defined by a pure precipitate of known stoichiometry. If 
this assumption is not true, then the resulting determination of nA or CA 
is inaccurate. We can minimize a determinate error in kA by calibrating the 
method. A method error due to an interferent in the reagents is minimized 
by using a proper method blank. 

MEASUREMENT ERRORS

The manufacturers of analytical instruments and equipment, such as glass-
ware and balances, usually provide a statement of the item’s maximum mea-
surement error, or tolerance. For example, a 10-mL volumetric pipet 
(Figure 4.2) has a tolerance of ±0.02 mL, which means the pipet delivers an 
actual volume within the range 9.98–10.02 mL at a temperature of 20 oC. 
Although we express this tolerance as a range, the error is determinate; that 
is, the pipet’s expected volume, n, is a fixed value within this stated range. 

Volumetric glassware is categorized into classes based on its relative ac-
curacy. Class A glassware is manufactured to comply with tolerances speci-
fied by an agency, such as the National Institute of Standards and Technol-
ogy or the American Society for Testing and Materials. The tolerance level 
for Class A glassware is small enough that normally we can use it without 
calibration. The tolerance levels for Class B glassware usually are twice that 
for Class A glassware. Other types of volumetric glassware, such as beakers 
and graduated cylinders, are not used to measure volume accurately. Table 
4.2 provides a summary of typical measurement errors for Class A volumet-
ric glassware. Tolerances for digital pipets and for balances are provided in 
Table 4.3 and Table 4.4. 

An awareness of potential sampling errors  
especially is important when we work 
with heterogeneous materials. Strategies 
for obtaining representative samples are 
covered in Chapter 5.

Figure 4.2 Close-up of a 10-mL 
volumetric pipet showing that it 
has a tolerance of ±0.02 mL at 
20 oC.
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Table 4.2 Measurement Errors for Type A Volumetric Glassware†

  Transfer Pipets Volumetric Flasks Burets
Capacity 

(mL)
Tolerance 

(mL)
Capacity 

(mL)
Tolerance 

(mL)
Capacity 

(mL)
Tolerance 

(mL)
1 ±0.006 5 ±0.02 10 ±0.02
2 ±0.006 10 ±0.02 25 ±0.03
5 ±0.01 25 ±0.03 50 ±0.05

10 ±0.02 50 ±0.05
20 ±0.03 100 ±0.08
25 ±0.03 250 ±0.12
50 ±0.05 500 ±0.20

100 ±0.08 1000 ±0.30
2000 ±0.50

† Tolerance values are from the ASTM E288, E542, and E694 standards.

Table 4.3 Measurement Errors for Digital Pipets†

Pipet Range Volume (mL or mL)‡ Percent Measurement Error
 10–100 µL 10 ±3.0%

50 ±1.0%
100 ±0.8%

 100–1000 µL 100 ±3.0%
500 ±1.0%

1000 ±0.6%
 1–10 mL 1 ±3.0%

5 ±0.8%
10 ±0.6%

† Values are from www.eppendorf.com. ‡ Units for volume match the units for the pipet’s range.

We can minimize a determinate measurement error by calibrating our 
equipment. Balances are calibrated using a reference weight whose mass 
we can trace back to the SI standard kilogram. Volumetric glassware and 
digital pipets are calibrated by determining the mass of water delivered or 
contained and using the density of water to calculate the actual volume. It 
is never safe to assume that a calibration does not change during an analy-
sis or over time. One study, for example, found that repeatedly exposing 
volumetric glassware to higher temperatures during machine washing and 
oven drying, led to small, but significant changes in the glassware’s calibra-
tion.2 Many instruments drift out of calibration over time and may require 
frequent recalibration during an analysis.

2 Castanheira, I.; Batista, E.; Valente, A.; Dias, G.; Mora, M.; Pinto, L.; Costa, H. S. Food Control 
2006, 17, 719–726.
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PERSONAL ERRORS

Finally, analytical work is always subject to personal error, examples of 
which include the ability to see a change in the color of an indicator that 
signals the endpoint of a titration, biases, such as consistently overestimat-
ing or underestimating the value on an instrument’s readout scale, failing to 
calibrate instrumentation, and misinterpreting procedural directions. You 
can minimize personal errors by taking proper care.

IDENTIFYING DETERMINATE ERRORS

Determinate errors often are difficult to detect. Without knowing the ex-
pected value for an analysis, the usual situation in any analysis that matters, 
we often have nothing to which we can compare our experimental result. 
Nevertheless, there are strategies we can use to detect determinate errors. 

The magnitude of a constant determinate error is the same for all 
samples and is more significant when we analyze smaller samples. Analyz-
ing samples of different sizes, therefore, allows us to detect a constant de-
terminate error. For example, consider a quantitative analysis in which we 
separate the analyte from its matrix and determine its mass. Let’s assume 
the sample is 50.0% w/w analyte. As we see in Table 4.5, the expected 
amount of analyte in a 0.100 g sample is 0.050 g. If the analysis has a posi-
tive constant determinate error of 0.010 g, then analyzing the sample gives 
0.060 g of analyte, or a concentration of 60.0% w/w. As we increase the 
size of the sample the experimental results become closer to the expected 
result. An upward or downward trend in a graph of the analyte’s experi-

Table 4.4 Measurement Errors for Selected Balances
Balance Capacity (g) Measurement Error

 Precisa 160M 160 ±1 mg
 A & D ER 120M 120 ±0.1 mg
 Metler H54 160 ±0.01 mg

Table 4.5 Effect of a Constant Determinate Error on the Analysis of a Sample  
That is 50.0% w/w Analyte

Mass Sample  
(g)

Expected Mass  
of Analyte  

(g)
Constant Error  

(g)

Experimental 
Mass of Analyte  

(g)

Experimental 
Concentration of Analyte  

(%w/w)
0.100 0.050 0.010 0.060 60.0
0.200 0.100 0.010 0.110 55.0
0.400 0.200 0.010 0.210 52.5
0.800 0.400 0.010 0.410 51.2
1.600 0.800 0.010 0.810 50.6



72 Analytical Chemistry 2.1

mental concentration versus the sample’s mass (Figure 4.3) is evidence of a 
constant determinate error.

A proportional determinate error, in which the error’s magnitude 
depends on the amount of sample, is more difficult to detect because the 
result of the analysis is independent of the amount of sample. Table 4.6 
outlines an example that shows the effect of a positive proportional error of 
1.0% on the analysis of a sample that is 50.0% w/w in analyte. Regardless of 
the sample’s size, each analysis gives the same result of 50.5% w/w analyte.

One approach for detecting a proportional determinate error is to ana-
lyze a standard that contains a known amount of analyte in a matrix similar 
to our samples. Standards are available from a variety of sources, such as 
the National Institute of Standards and Technology (where they are called 
Standard Reference Materials) or the American Society for Testing and 
Materials. Table 4.7, for example, lists certified values for several analytes 
in a standard sample of Gingko biloba leaves. Another approach is to com-
pare our analysis to an analysis carried out using an independent analytical 
method that is known to give accurate results. If the two methods give 
significantly different results, then a determinate error is the likely cause.

Figure 4.3 Effect of a constant positive deter-
minate error of +0.01 g and a constant negative 
determinate error of –0.01 g on the determina-
tion of an analyte in samples of varying size. The 
analyte’s expected concentration of 50% w/w is 
shown by the dashed line.

Table 4.6 Effect of a Proportional Determinate Error on the Analysis of a Sample  
That is 50.0% w/w Analyte

Mass Sample  
(g)

Expected Mass  
of Analyte  

(g)

Proportional 
Error  
(%)

Experimental 
Mass of Analyte  

(g)

Experimental 
Concentration of Analyte  

(%w/w)
0.100 0.050 1.00 0.0505 50.5
0.200 0.100 1.00 0.101 50.5
0.400 0.200 1.00 0.202 50.5
0.800 0.400 1.00 0.404 50.5
1.600 0.800 1.00 0.808 50.5
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Constant and proportional determinate errors have distinctly different 
sources, which we can define in terms of the relationship between the signal 
and the moles or concentration of analyte (equation 4.4 and equation 4.5). 
An invalid method blank, Smb, is a constant determinate error as it adds or 
subtracts the same value to the signal. A poorly calibrated method, which 
yields an invalid sensitivity for the analyte, kA, results in a proportional 
determinate error.

4B.2 Errors That Affect Precision

As we saw in Section 4A.2, precision is a measure of the spread of individual 
measurements or results about a central value, which we express as a range, 
a standard deviation, or a variance. Here we draw a distinction between 
two types of precision: repeatability and reproducibility. Repeatability is 
the precision when a single analyst completes an analysis in a single session 
using the same solutions, equipment, and instrumentation. Reproduc-
ibility, on the other hand, is the precision under any other set of condi-
tions, including between analysts or between laboratory sessions for a single 
analyst. Since reproducibility includes additional sources of variability, the 
reproducibility of an analysis cannot be better than its repeatability. 

Errors that affect precision are indeterminate and are characterized by 
random variations in their magnitude and their direction. Because they 
are random, positive and negative indeterminate errors tend to cancel, 
provided that we make a sufficient number of measurements. In such situ-

Table 4.7 Certified Concentrations for SRM 3246: Ginkgo biloba (Leaves)†

Class of Analyte Analyte Mass Fraction (mg/g or ng/g)
Flavonoids/Ginkgolide B Quercetin 2.69 ± 0.31
(mass fractions in mg/g) Kaempferol 3.02 ± 0.41

Isorhamnetin 0.517 ± 0.099
Total Aglycones 6.22 ± 0.77

Selected Terpenes Ginkgolide A 0.57 ± 0.28
(mass fractions in mg/g) Ginkgolide B 0.470 ± 0.090

Ginkgolide C 0.59 ± 0.22
Ginkgolide J 0.18 ± 0.10
Biloabalide 1.52 ± 0.40
Total Terpene Lactones 3.3 ± 1.1

Selected Toxic Elements Cadmium 20.8 ± 1.0
(mass fractions in ng/g) Lead 995 ± 30

Mercury 23.08 ± 0.17
† The primary purpose of this Standard Reference Material is to validate analytical methods for determining flavonoids, 

terpene lactones, and toxic elements in Ginkgo biloba or other materials with a similar matrix. Values are from the 
official Certificate of Analysis available at www.nist.gov.

The ratio of the standard deviation associ-
ated with reproducibility to the standard 
deviation associated with repeatability 
is called the Horowitz ratio. For a wide 
variety of analytes in foods, for example, 
the median Horowtiz ratio is 2.0 with 
larger values for fatty acids and for trace 
elements; see Thompson, M.; Wood, R. 
“The ‘Horowitz Ratio’–A Study of the Ra-
tio Between Reproducibility and Repeat-
ability in the Analysis of Foodstuffs,” Anal. 
Methods, 2015, 7, 375–379.
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ations the mean and the median largely are unaffected by the precision of 
the analysis.

SOURCES OF INDETERMINATE ERROR

We can assign indeterminate errors to several sources, including collecting 
samples, manipulating samples during the analysis, and making measure-
ments. When we collect a sample, for instance, only a small portion of 
the available material is taken, which increases the chance that small-scale 
inhomogeneities in the sample will affect repeatability. Individual pennies, 
for example, may show variations in mass from several sources, including 
the manufacturing process and the loss of small amounts of metal or the 
addition of dirt during circulation. These variations are sources of indeter-
minate sampling errors.

During an analysis there are many opportunities to introduce indeter-
minate method errors. If our method for determining the mass of a penny 
includes directions for cleaning them of dirt, then we must be careful to 
treat each penny in the same way. Cleaning some pennies more vigorously 
than others might introduce an indeterminate method error.

Finally, all measuring devices are subject to indeterminate measurement 
errors due to limitations in our ability to read its scale. For example, a buret 
with scale divisions every 0.1 mL has an inherent indeterminate error of 
±0.01–0.03 mL when we estimate the volume to the hundredth of a mil-
liliter (Figure 4.4). 

EVALUATING INDETERMINATE ERROR

Indeterminate errors associated with our analytical equipment or instru-
mentation generally are easy to estimate if we measure the standard devia-
tion for several replicate measurements, or if we monitor the signal’s fluc-
tuations over time in the absence of analyte (Figure 4.5) and calculate the 
standard deviation. Other sources of indeterminate error, such as treating 
samples inconsistently, are more difficult to estimate. 

30

31

Figure 4.4 Close-up of a buret 
showing the difficulty in estimat-
ing volume. With scale divisions 
every 0.1 mL it is difficult to read 
the actual volume to better than 
±0.01–0.03 mL. 
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Figure 4.5 Background noise in 
an instrument showing the ran-
dom fluctuations in the signal.
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To evaluate the effect of an indeterminate measurement error on our 
analysis of the mass of a circulating United States penny, we might make 
several determinations of the mass for a single penny (Table 4.8). The stan-
dard deviation for our original experiment (see Table 4.1) is 0.051 g, and it 
is 0.0024 g for the data in Table 4.8. The significantly better precision when 
we determine the mass of a single penny suggests that the precision of our 
analysis is not limited by the balance. A more likely source of indeterminate 
error is a variability in the masses of individual pennies.

4B.3 Error and Uncertainty

Analytical chemists make a distinction between error and uncertainty.3 Er-
ror is the difference between a single measurement or result and its ex-
pected value. In other words, error is a measure of bias. As discussed earlier, 
we divide errors into determinate and indeterminate sources. Although we 
can find and correct a source of determinate error, the indeterminate por-
tion of the error remains. 

Uncertainty expresses the range of possible values for a measurement 
or result. Note that this definition of uncertainty is not the same as our 
definition of precision. We calculate precision from our experimental data 
and use it to estimate the magnitude of indeterminate errors. Uncertainty 
accounts for all errors—both determinate and indeterminate—that rea-
sonably might affect a measurement or a result. Although we always try to 
correct determinate errors before we begin an analysis, the correction itself 
is subject to uncertainty.

Here is an example to help illustrate the difference between precision 
and uncertainty. Suppose you purchase a 10-mL Class A pipet from a labo-
ratory supply company and use it without any additional calibration. The 
pipet’s tolerance of ±0.02 mL is its uncertainty because your best estimate 
of its expected volume is 10.00 mL ± 0.02 mL. This uncertainty primarily 
is determinate. If you use the pipet to dispense several replicate samples of 
a solution and determine the volume of each sample, the resulting standard 
deviation is the pipet’s precision. Table 4.9 shows results for ten such trials, 
with a mean of 9.992 mL and a standard deviation of ±0.006 mL. This 
standard deviation is the precision with which we expect to deliver a solu-
3 Ellison, S.; Wegscheider, W.; Williams, A. Anal. Chem. 1997, 69, 607A–613A.

Table 4.8 Replicate Determinations of the Mass of a 
Single Circulating U. S. Penny

Replicate Mass (g) Replicate Mass (g)
1 3.025 6 3.023
2 3.024 7 3.022
3 3.028 8 3.021
4 3.027 9 3.026
5 3.028 10 3.024

See Table 4.2 for the tolerance of a 10-mL 
class A transfer pipet.

In Section 4E we will discuss a statistical 
method—the F-test—that you can use to 
show that this difference is significant.
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tion using a Class A 10-mL pipet. In this case the pipet’s published uncer-
tainty of ±0.02 mL is worse than its experimentally determined precision 
of ±0.006 ml. Interestingly, the data in Table 4.9 allows us to calibrate 
this specific pipet’s delivery volume as 9.992 mL. If we use this volume 
as a better estimate of the pipet’s expected volume, then its uncertainty 
is ±0.006 mL. As expected, calibrating the pipet allows us to decrease its 
uncertainty.4

4C Propagation of Uncertainty
Suppose we dispense 20 mL of a reagent using the Class A 10-mL pipet 
whose calibration information is given in Table 4.9. If the volume and un-
certainty for one use of the pipet is 9.992 ± 0.006 mL, what is the volume 
and uncertainty if we use the pipet twice? 

As a first guess, we might simply add together the volume and the 
maximum uncertainty for each delivery; thus

(9.992 mL + 9.992 mL) ± (0.006 mL + 0.006 mL) = 19.984 ± 0.012 mL

It is easy to appreciate that combining uncertainties in this way overesti-
mates the total uncertainty. Adding the uncertainty for the first delivery to 
that of the second delivery assumes that with each use the indeterminate 
error is in the same direction and is as large as possible. At the other ex-
treme, we might assume that the uncertainty for one delivery is positive 
and the other is negative. If we subtract the maximum uncertainties for 
each delivery,

(9.992 mL + 9.992 mL) ± (0.006 mL - 0.006 mL) = 19.984 ± 0.000 mL

we clearly underestimate the total uncertainty.
So what is the total uncertainty? From the discussion above, we reason-

ably expect that the total uncertainty is greater than ±0.000 mL and that it 
is less than ±0.012 mL. To estimate the uncertainty we use a mathematical 
technique known as the propagation of uncertainty. Our treatment of the 
propagation of uncertainty is based on a few simple rules.

4 Kadis, R. Talanta 2004, 64, 167–173.

Table 4.9 Experimental Results for Volume Delivered by a 
10-mL Class A Transfer Pipet

Number Volume (mL) Number Volume (mL)
1 10.002 6 9.983
2 9.993 7 9.991
3 9.984 8 9.990
4 9.996 9 9.988
5 9.989 10 9.999

Although we will not derive or further 
justify the rules presented in this section, 
you may consult this chapter’s additional 
resources for references that discuss the 
propagation of uncertainty in more detail.
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4C.1 A Few Symbols

A propagation of uncertainty allows us to estimate the uncertainty in 
a result from the uncertainties in the measurements used to calculate that 
result. For the equations in this section we represent the result with the 
symbol R, and we represent the measurements with the symbols A, B, and 
C. The corresponding uncertainties are uR, uA, uB, and uC. We can define 
the uncertainties for A, B, and C using standard deviations, ranges, or tol-
erances (or any other measure of uncertainty), as long as we use the same 
form for all measurements.

4C.2 Uncertainty When Adding or Subtracting

When we add or subtract measurements we propagate their absolute uncer-
tainties. For example, if the result is given by the equation 

R = A + B - C

then the absolute uncertainty in R is

u u u uR A B C
2 2 2= + + 4.6

Example 4.5
If we dispense 20 mL using a 10-mL Class A pipet, what is the total volume 
dispensed and what is the uncertainty in this volume? First, complete the 
calculation using the manufacturer’s tolerance of 10.00 mL ± 0.02 mL, 
and then using the calibration data from Table 4.9.

SOLUTION

To calculate the total volume we add the volumes for each use of the pipet. 
When using the manufacturer’s values, the total volume is

. . .V 10 00 10 00 20 00mL mL mL= + =

and when using the calibration data, the total volume is

. . .V 9 992 9 992 19 984mL mL mL= + =

Using the pipet’s tolerance as an estimate of its uncertainty gives the un-
certainty in the total volume as

( . ) ( . ) .u 0 02 0 02 0 028 mLR
2 2= + =

and using the standard deviation for the data in Table 4.9 gives an uncer-
tainty of

( . ) ( . ) .u 0 006 0 006 0 0085 mLR
2 2= + =

Rounding the volumes to four significant figures gives 20.00 mL ± 0.03 mL 
when we use the tolerance values, and 19.98 ± 0.01 mL when we use the 
calibration data.

The requirement that we express each un-
certainty in the same way is a critically im-
portant point. Suppose you have a range 
for one measurement, such as a pipet’s 
tolerance, and standard deviations for the 
other measurements. All is not lost. There 
are ways to convert a range to an estimate 
of the standard deviation. See Appendix 2 
for more details.
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4C.3 Uncertainty When Multiplying or Dividing

When we multiple or divide measurements we propagate their relative un-
certainties. For example, if the result is given by the equation 

R C
A B#=

then the relative uncertainty in R is

R
u

A
u

B
u

C
uR A B C2 2 2

= + +` ` `j j j 4.7

Example 4.6
The quantity of charge, Q, in coulombs that passes through an electrical 
circuit is

Q i t#=

where i is the current in amperes and t is the time in seconds. When a cur-
rent of 0.15 A ± 0.01 A passes through the circuit for 120  s ± 1 s, what is 
the total charge and its uncertainty? 

SOLUTION

The total charge is

( . ) ( )Q 0 15 120 18A s C#= =

Since charge is the product of current and time, the relative uncertainty 
in the charge is

.

. .R
u

0 15
0 01

120
1 0 0672R

2 2
= + =a `k j

and the charge’s absolute uncertainty is

. ( ) ( . ) .u R 0 0672 18 0 0672 1 2C CR # #= = =

Thus, we report the total charge as 18 C ± 1 C.

4C.4 Uncertainty for Mixed Operations

Many chemical calculations involve a combination of adding and subtract-
ing, and of multiply and dividing. As shown in the following example, we 
can calculate the uncertainty by separately treating each operation using 
equation 4.6 and equation 4.7 as needed.

Example 4.7
For a concentration technique, the relationship between the signal and the 
an analyte’s concentration is

S k C Stotal A A mb= +



79Chapter 4 Evaluating Analytical Data

What is the analyte’s concentration, CA, and its uncertainty if Stotal is 
24.37 ± 0.02, Smb is 0.96 ± 0.02, and kA is 0.186 ± 0.003 ppm–1?

SOLUTION

Rearranging the equation and solving for CA

.
. .

.
. .C k

S S
0 186
24 37 0 96

0 186
23 41 125 9ppm ppm ppmA

A

total mb
1 1= - = - = =- -

gives the analyte’s concentration as 126 ppm. To estimate the uncertainty 
in CA, we first use equation 4.6 to determine the uncertainty for the nu-
merator.

( . ) ( . ) .u 0 02 0 02 0 028R
2 2= + =

The numerator, therefore, is 23.41 ± 0.028. To complete the calculation 
we use equation 4.7 to estimate the relative uncertainty in CA.

.
.

.

. .R
u

23 41
0 028

0 186
0 003 0 0162R

2 2
= + =a ak k

The absolute uncertainty in the analyte’s concentration is

( . ) ( . ) .u 125 9 0 0162 2 0ppm ppmR #= =

Thus, we report the analyte’s concentration as 126 ppm ± 2 ppm.

4C.5 Uncertainty for Other Mathematical Functions

Many other mathematical operations are common in analytical chemistry, 
including the use of powers, roots, and logarithms. Table 4.10 provides 
equations for propagating uncertainty for some of these function.

Example 4.8
If the pH of a solution is 3.72 with an absolute uncertainty of ±0.03, what 
is the [H+] and its uncertainty?

SOLUTION

The concentration of H+ is

 [H ] 10 10 1.91 10 MpH 3.72 4#= = =+ - - -

Practice Exercise 4.2
To prepare a standard solution of Cu2+ you obtain a piece of copper from a spool of wire. The spool’s initial 
weight is 74.2991 g and its final weight is 73.3216 g. You place the sample of wire in a 500 mL volumetric 
flask, dissolve it in 10 mL of HNO3, and dilute to volume. Next, you pipet a 1 mL portion to a 250-mL 
volumetric flask and dilute to volume. What is the final concentration of Cu2+ in mg/L, and its uncertainty? 
Assume that the uncertainty in the balance is ±0.1 mg and that you are using Class A glassware. 
Click here when to review your answer to this exercise.
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or 1.9 × 10–4 M to two significant figures. From Table 4.10 the relative 
uncertainty in [H+] is

. . . .R
u u2 303 2 303 0 03 0 069R

A# #= = =

The uncertainty in the concentration, therefore, is

( . ) ( . ) .1 91 10 0 069 1 3 10M M4 5# # #=- -

We report the [H+] as 1.9 (±0.1) × 10–4 M.

Table 4.10 Propagation of Uncertainty for Selected 
Mathematical Functions†

Function uR

R kA= u kuR A=

R A B= + u u uR A B
2 2= +

R A B= - u u uR A B
2 2= +

R A B#= R
u

A
u

B
uR A B2 2

= +` `j j
R B

A= R
u

A
u

B
uR A B2 2

= +` `j j
( )lnR A= u A

u
R

A=

( )logR A= .u A
u0 4343R

A#=

R eA= R
u uR

A=

R 10A= .R
u u2 303R

A#=

R Ak= R
u k A

uR A#=

†  Assumes that the measurements A and B are independent; k is a constant whose value has no 
uncertainty.

Practice Exercise 4.3
A solution of copper ions is blue because it absorbs yellow and orange light. Absorbance, A, is defined as 

logA P
P

o
=- a k

where Po is the power of radiation as emitted from the light source and P is its power after it passes through 
the solution. What is the absorbance if Po is 3.80×102 and P is 1.50×102? If the uncertainty in measuring Po 
and P is 15, what is the uncertainty in the absorbance?
Click here to review your answer to this exercise.

Writing this result as 
1.9 (±0.1) × 10–4 M 

is equivalent to
1.9 × 10–4 M ± 0.1 × 10–4 M
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4C.6 Is Calculating Uncertainty Actually Useful?

Given the effort it takes to calculate uncertainty, it is worth asking whether 
such calculations are useful. The short answer is, yes. Let’s consider three 
examples of how we can use a propagation of uncertainty to help guide the 
development of an analytical method.

One reason to complete a propagation of uncertainty is that we can 
compare our estimate of the uncertainty to that obtained experimentally. 
For example, to determine the mass of a penny we measure its mass twice—
once to tare the balance at 0.000 g and once to measure the penny’s mass. If 
the uncertainty in each measurement of mass is ±0.001 g, then we estimate 
the total uncertainty in the penny’s mass as

( . ) ( . ) .u 0 001 0 001 0 0014 gR
2 2= + =

If we measure a single penny’s mass several times and obtain a standard de-
viation of ±0.050 g, then we have evidence that the measurement process 
is out of control. Knowing this, we can identify and correct the problem.

We also can use a propagation of uncertainty to help us decide how to 
improve an analytical method’s uncertainty. In Example 4.7, for instance, 
we calculated an analyte’s concentration as 126 ppm ± 2 ppm, which is a 
percent uncertainty of 1.6%. Suppose we want to decrease the percent un-
certainty to no more than 0.8%. How might we accomplish this? Looking 
back at the calculation, we see that the concentration’s relative uncertainty  
is determined by the relative uncertainty in the measured signal (corrected 
for the reagent blank)

.
. . .23 41

0 028 0 0012 0 12or %=

and the relative uncertainty in the method’s sensitivity, kA,

.

.
. .0 186

0 003
0 016 1 6ppm

ppm
or %1

1

=-

-

Of these two terms, the uncertainty in the method’s sensitivity dominates 
the overall uncertainty. Improving the signal’s uncertainty will not improve 
the overall uncertainty of the analysis. To achieve an overall uncertainty of 
0.8% we must improve the uncertainty in kA to ±0.0015 ppm–1. 

Practice Exercise 4.4
Verify that an uncertainty of ±0.0015 ppm–1 for kA is the correct result.
Click here to review your answer to this exercise.

Finally, we can use a propagation of uncertainty to determine which of 
several procedures provides the smallest uncertainty. When we dilute a stock 
solution usually there are several combinations of volumetric glassware that 
will give the same final concentration. For instance, we can dilute a stock 
solution by a factor of 10 using a 10-mL pipet and a 100-mL volumetric 
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flask, or using a 25-mL pipet and a 250-mL volumetric flask. We also can 
accomplish the same dilution in two steps using a 50-mL pipet and 100-
mL volumetric flask for the first dilution, and a 10-mL pipet and a 50-mL 
volumetric flask for the second dilution. The overall uncertainty in the final 
concentration—and, therefore, the best option for the dilution—depends 
on the uncertainty of the volumetric pipets and volumetric flasks. As shown 
in the following example, we can use the tolerance values for volumetric 
glassware to determine the optimum dilution strategy.5

Example 4.9
Which of the following methods for preparing a 0.0010 M solution from 
a 1.0 M stock solution provides the smallest overall uncertainty?

    (a) A one-step dilution that uses a 1-mL pipet and a 1000-mL volumetric 
flask.

    (b) A two-step dilution that uses a 20-mL pipet and a 1000-mL volu-
metric flask for the first dilution, and a 25-mL pipet and a 500-mL 
volumetric flask for the second dilution.

SOLUTION

The dilution calculations for case (a) and case (b) are

: . .
. .1 0 1000 0

1 000 0 0010case (a) M mL
mL M# =

: . .
.

.
. .1 0 1000 0

20 00
500 0
25 00 0 0010case(b) M mL

mL
mL
mL M# # =

Using tolerance values from Table 4.2, the relative uncertainty for case (a) 
is

.

.
.

. .R
u

1 000
0 006

1000 0
0 3 0 006R

2 2
= + =a `k j

and for case (b) the relative uncertainty is

.
.

.
.

.
.

.
. .R

u
20 00
0 03

1000 0
0 3

25 00
0 03

500 0
0 2 0 002R

2 2 2 2
= + + + =` ` a aj j k k

Since the relative uncertainty for case (b) is less than that for case (a), the 
two-step dilution provides the smallest overall uncertainty. 

4D The Distribution of Measurements and Results
Earlier we reported results for a determination of the mass of a circulating 
United States penny, obtaining a mean of 3.117 g and a standard devia-
tion of 0.051 g. Table 4.11 shows results for a second, independent deter-
mination of a penny’s mass, as well as the data from the first experiment. 
Although the means and standard deviations for the two experiments are 
similar, they are not identical. The difference between the two experiments 

5 Lam, R. B.; Isenhour, T. L. Anal. Chem. 1980, 52, 1158–1161.

Of course we must balance the smaller un-
certainty for case (b) against the increased 
opportunity for introducing a determi-
nate error when making two dilutions 
instead of just one dilution, as in case (a). 
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raises some interesting questions. Are the results for one experiment better 
than the results for the other experiment? Do the two experiments provide 
equivalent estimates for the mean and the standard deviation? What is our 
best estimate of a penny’s expected mass? To answer these questions we need 
to understand how we might predict the properties of all pennies using the 
results from an analysis of a small sample of pennies. We begin by making 
a distinction between populations and samples.

4D.1 Populations and Samples

A population is the set of all objects in the system we are investigating. For 
the data in Table 4.11, the population is all United States pennies in circu-
lation. This population is so large that we cannot analyze every member of 
the population. Instead, we select and analyze a limited subset, or sample 
of the population. The data in Table 4.11, for example, shows the results 
for two such samples drawn from the larger population of all circulating 
United States pennies.

4D.2 Probability Distributions for Populations

Table 4.11 provides the means and the standard deviations for two samples 
of circulating United States pennies. What do these samples tell us about 
the population of pennies? What is the largest possible mass for a penny? 
What is the smallest possible mass? Are all masses equally probable, or are 
some masses more common? 

To answer these questions we need to know how the masses of individu-
al pennies are distributed about the population’s average mass. We represent 
the distribution of a population by plotting the probability or frequency of 

Table 4.11 Results for Two Determinations of the Mass of 
a Circulating United States Penny

First Experiment Second Experiment
Penny Mass (g) Penny Mass (g)

1 3.080 1 3.052
2 3.094 2 3.141
3 3.107 3 3.083
4 3.056 4 3.083
5 3.112 5 3.048
6 3.174
7 3.198

X 3.117 3.081
s 0.051 0.037
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obtaining a specific result as a function of the possible results. Such plots 
are called probability distributions. 

There are many possible probability distributions; in fact, the probabil-
ity distribution can take any shape depending on the nature of the popula-
tion. Fortunately many chemical systems display one of several common 
probability distributions. Two of these distributions, the binomial distribu-
tion and the normal distribution, are discussed in this section.

BINOMIAL DISTRIBUTION

The binomial distribution describes a population in which the result is 
the number of times a particular event occurs during a fixed number of tri-
als. Mathematically, the binomial distribution is defined as

( , ) ! ( ) !
! ( )P X N X N X

N p p1X N X# #= - - -

where P(X , N) is the probability that an event occurs X times during N tri-
als, and p is the event’s probability for a single trial. If you flip a coin five 
times, P(2,5) is the probability the coin will turn up “heads” exactly twice.

A binomial distribution has well-defined measures of central tendency 
and spread. The expected mean value is

Npn=

and the expected spread is given by the variance

( )Np p12v = -

or the standard deviation.

( )Np p1v= -

 The binomial distribution describes a population whose members have 
only specific, discrete values. When you roll a die, for example, the possible 
values are 1, 2, 3, 4, 5, or 6. A roll of 3.45 is not possible. As shown in 
Example 4.10, one example of a chemical system that obeys the binomial 
distribution is the probability of finding a particular isotope in a molecule.

Example 4.10
Carbon has two stable, non-radioactive isotopes, 12C and 13C, with rela-
tive isotopic abundances of, respectively, 98.89% and 1.11%. 
(a) What are the mean and the standard deviation for the number of 13C 

atoms in a molecule of cholesterol (C27H44O)? 
(b)  What is the probability that a molecule of cholesterol has no atoms 

of 13C?

SOLUTION

The probability of finding an atom of 13C in a molecule of cholesterol 
follows a binomial distribution, where X is the number of 13C atoms, N 

The term N! reads as N-factorial and is the 
product N × (N–1) × (N–2) ×…× 1. For 
example, 4! is 4 × 3 × 2 × 1 =   24. Your 
calculator probably has a key for calculat-
ing factorials.
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is the number of carbon atoms in a molecule of cholesterol, and p is the 
probability that an atom of carbon in 13C.

(a) The mean number of 13C atoms in a molecule of cholesterol is

. .Np 27 0 0111 0 300#n= = =

with a standard deviation of

( ) . ( . ) .Np p1 27 0 0111 1 0 0111 0 544# #v= - = - =

(b)  The probability of finding a molecule of cholesterol without an atom 
of 13C is

( , ) ! ( ) !
! ( . )

( . ) .

P 0 27 0 27 0
27 0 0111

1 0 0111 0 740

0

27 0

# #= -
- =-

There is a 74.0% probability that a molecule of cholesterol will not 
have an atom of 13C, a result consistent with the observation that 
the mean number of 13C atoms per molecule of cholesterol, 0.300, 
is less than one.

A portion of the binomial distribution for atoms of 13C in cholesterol is 
shown in Figure 4.6. Note in particular that there is little probability of 
finding more than two atoms of 13C in any molecule of cholesterol.

NORMAL DISTRIBUTION

A binomial distribution describes a population whose members have only 
certain discrete values. This is the case with the number of 13C atoms in 
cholesterol. A molecule of cholesterol, for example, can have two 13C atoms, 
but it can not have 2.5 atoms of 13C. A population is continuous if its mem-
bers may take on any value. The efficiency of extracting cholesterol from a 

Figure 4.6 Portion of the binomial dis-
tribution for the number of naturally 
occurring 13C atoms in a molecule of 
cholesterol. Only 3.6% of cholesterol 
molecules contain more than one atom 
of 13C, and only 0.33% contain more 
than two atoms of 13C.
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sample, for example, can take on any value between 0% (no cholesterol is 
extracted) and 100% (all cholesterol is extracted).

The most common continuous distribution is the Gaussian, or normal 
distribution, the equation for which is

( )f X e
2
1 ( )X

2
2 2

2

rv
= v

n
-
-

where n is the expected mean for a population with n members

n

Xi
i

n

1n= =

/

and v2 is the population’s variance.

( )
n
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i

n

2

2

1v
n

=
-

=

/ 4.8

Examples of three normal distributions, each with an expected mean of 0 
and with variances of 25, 100, or 400, respectively, are shown in Figure 4.7. 
Two features of these normal distribution curves deserve attention. First, 
note that each normal distribution has a single maximum that corresponds 
to m, and that the distribution is symmetrical about this value. Second, 
increasing the population’s variance increases the distribution’s spread and 
decreases its height; the area under the curve, however, is the same for all 
three distributions.

The area under a normal distribution curve is an important and useful 
property as it is equal to the probability of finding a member of the popula-
tion within a particular range of values. In Figure 4.7, for example, 99.99% 
of the population shown in curve (a) have values of X between –20 and 
+20. For curve (c), 68.26% of the population’s members have values of X 
between –20 and +20.

Because a normal distribution depends solely on n and v2, the prob-
ability of finding a member of the population between any two limits is 

Figure 4.7 Normal distribution 
curves for: 
 (a) n = 0; v2 = 25
 (b) n = 0; v2 = 100
 (c) n = 0; v2=400 -40 -20 0 20 40
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the same for all normally distributed populations. Figure 4.8, for example, 
shows that 68.26% of the members of a normal distribution have a value 
within the range n ± 1v, and that 95.44% of population’s members have 
values within the range n ± 2v. Only 0.27% members of a population 
have values that exceed the expected mean by more than ± 3v. Additional 
ranges and probabilities are gathered together in the probability table in-
cluded in Appendix 3. As shown in Example 4.11, if we know the mean 
and the standard deviation for a normally distributed population, then we 
can determine the percentage of the population between any defined limits. 

Example 4.11
The amount of aspirin in the analgesic tablets from a particular manufac-
turer is known to follow a normal distribution with n = 250 mg and v = 5. 
In a random sample of tablets from the production line, what percentage 
are expected to contain between 243 and 262 mg of aspirin?

SOLUTION

We do not determine directly the percentage of tablets between 243 mg 
and 262 mg of aspirin. Instead, we first find the percentage of tablets with 
less than 243 mg of aspirin and the percentage of tablets having more than 
262 mg of aspirin. Subtracting these results from 100%, gives the percent-
age of tablets that contain between 243 mg and 262 mg of aspirin. 

-3m -2m -1m +3m+2m+1mμ

34.13%

13.59 %
2.14 % 2.14 %

34.13%

13.59 %

Value of X
Figure 4.8 Normal distribution curve showing the area under the curve for several different ranges of values of X. As 
shown here, 68.26% of the members of a normally distributed population have values within ±1v of the population’s 
expected mean, and 13.59% have values between n–1v and n–2v. The area under the curve between any two limits 
is found using the probability table in Appendix 3.
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To find the percentage of tablets with less than 243 mg of aspirin or more 
than 262 mg of aspirin we calculate the deviation, z, of each limit from n 
in terms of the population’s standard deviation, v

 z X
v
n

=
-

where X is the limit in question. The deviation for the lower limit is

.z 5
243 250 1 4lower=
- =-

and the deviation for the upper limit is

.z 5
262 250 2 4upper=
- =+

Using the table in Appendix 3, we find that the percentage of tablets with 
less than 243 mg of aspirin is 8.08%, and that the percentage of tablets 
with more than 262 mg of aspirin is 0.82%. Therefore, the percentage of 
tablets containing between 243 and 262 mg of aspirin is

. . . .100 00 8 08 0 82 91 10% % % %- - =

Figure 4.9 shows the distribution of aspiring in the tablets, with the area 
in blue showing the percentage of tablets containing between 243 mg and 
262 mg of aspirin.

230 240 250 260 270
Aspirin (mg)

8.08%
0.82%

91.10%

Figure 4.9 Normal distribution for the popu-
lation of aspirin tablets in Example 4.11. The 
population’s mean and standard deviation are 
250 mg and 5 mg, respectively. The shaded 
area shows the percentage of tablets contain-
ing between 243 mg and 262 mg of aspirin. 

Practice Exercise 4.5
What percentage of aspirin 
tablets will contain between 
240 mg and 245 mg of aspi-
rin if the population’s mean 
is 250 mg and the popula-
tion’s standard deviation is 5 
mg.
Click here to review your an-
swer to this exercise.
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4D.3 Confidence Intervals for Populations

If we select at random a single member from a population, what is its most 
likely value? This is an important question, and, in one form or another, it 
is at the heart of any analysis in which we wish to extrapolate from a sample 
to the sample’s parent population. One of the most important features of 
a population’s probability distribution is that it provides a way to answer 
this question. 

Figure 4.8 shows that for a normal distribution, 68.26% of the popula-
tion’s members have values within the range n ± 1v. Stating this another 
way, there is a 68.26% probability that the result for a single sample drawn 
from a normally distributed population is in the interval n ± 1v. In general, 
if we select a single sample we expect its value, Xi is in the range

X zi !n v= 4.9
where the value of z is how confident we are in assigning this range. Values 
reported in this fashion are called confidence intervals. Equation 4.9, 
for example, is the confidence interval for a single member of a population. 
Table 4.12 gives the confidence intervals for several values of z. For reasons 
discussed later in the chapter, a 95% confidence level is a common choice 
in analytical chemistry.

Example 4.12
What is the 95% confidence interval for the amount of aspirin in a single 
analgesic tablet drawn from a population for which m is 250 mg and for 
which v is 5?

SOLUTION

Using Table 4.12, we find that z is 1.96 for a 95% confidence interval. 
Substituting this into equation 4.9 gives the confidence interval for a single 
tablet as

. ( . )X 1 96 250 1 96 5 250 10mg mg mgi ! ! # !n v= = =

Table 4.12 Confidence Intervals for a 
Normal Distribution (n ± zv)

z Confidence Interval (%)
0.50 38.30
1.00 68.26
1.50 86.64
1.96 95.00
2.00 95.44
2.50 98.76
3.00 99.73
3.50 99.95

When z = 1, we call this the 68.26% con-
fidence interval.
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A confidence interval of 250 mg ± 10 mg means that 95% of the tablets in 
the population contain between 240 and 260 mg of aspirin.

Alternatively, we can rewrite equation 4.9 so that it gives the confidence 
interval is for m based on the population’s standard deviation and the value 
of a single member drawn from the population. 

X zi !n v= 4.10

Example 4.13
The population standard deviation for the amount of aspirin in a batch of 
analgesic tablets is known to be 7 mg of aspirin. If you randomly select and 
analyze a single tablet and find that it contains 245 mg of aspirin, what is 
the 95% confidence interval for the population’s mean?

SOLUTION

The 95% confidence interval for the population mean is given as

( . )X z 245 1 96 7 245 14mg mg mg mgi ! ! # !n v= = =

Therefore, based on this one sample, we estimate that there is 95% prob-
ability that the population’s mean, n, lies within the range of 231 mg to 
259 mg of aspirin. 

It is unusual to predict the population’s expected mean from the analy-
sis of a single sample; instead, we collect n samples drawn from a population 
of known v, and report the mean, X . The standard deviation of the mean, 

Xv , which also is known as the standard error of the mean, is

n
Xv v=

The confidence interval for the population’s mean, therefore, is

X
n

z!n v= 4.11

Example 4.14
What is the 95% confidence interval for the analgesic tablets in Example 
4.13, if an analysis of five tablets yields a mean of 245 mg of aspirin?

SOLUTION

In this case the confidence interval is
.245

5
1 96 7 245 6mg mg mg mg! # !n= =

We estimate a 95% probability that the population’s mean is between 239 
mg and 251 mg of aspirin. As expected, the confidence interval when using 
the mean of five samples is smaller than that for a single sample.

Note the qualification that the predic-
tion for n is based on one sample; a dif-
ferent sample likely will give a different 
95% confidence interval. Our result here, 
therefore, is an estimate for n based on 
this one sample.

Problem 8 at the end of the chapter asks 
you to derive this equation using a propa-
gation of uncertainty.
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4D.4 Probability Distributions for Samples

In Examples 4.11–4.14 we assumed that the amount of aspirin in analgesic 
tablets is normally distributed. Without analyzing every member of the 
population, how can we justify this assumption? In a situation where we 
cannot study the whole population, or when we cannot predict the math-
ematical form of a population’s probability distribution, we must deduce 
the distribution from a limited sampling of its members. 

SAMPLE DISTRIBUTIONS AND THE CENTRAL LIMIT THEOREM

Let’s return to the problem of determining a penny’s mass to explore further 
the relationship between a population’s distribution and the distribution of 
a sample drawn from that population. The two sets of data in Table 4.11 
are too small to provide a useful picture of a sample’s distribution, so we 
will use the larger sample of 100 pennies shown in Table 4.13. The mean 
and the standard deviation for this sample are 3.095 g and 0.0346 g, re-
spectively. 

A histogram (Figure 4.10) is a useful way to examine the data in Table 
4.13. To create the histogram, we divide the sample into intervals, by mass, 
and determine the percentage of pennies within each interval (Table 4.14). 
Note that the sample’s mean is the midpoint of the histogram. 

Figure 4.10 also includes a normal distribution curve for the population 
of pennies, based on the assumption that the mean and the variance for the 
sample are appropriate estimates for the population’s mean and variance. 
Although the histogram is not perfectly symmetric in shape, it provides a 
good approximation of the normal distribution curve, suggesting that the 
sample of 100 pennies is normally distributed. It is easy to imagine that 
the histogram will approximate more closely a normal distribution if we 
include additional pennies in our sample.

We will not offer a formal proof that the sample of pennies in Table 
4.13 and the population of all circulating U. S. pennies are normally dis-
tributed; however, the evidence in Figure 4.10 strongly suggests this is true. 
Although we cannot claim that the results of all experiments are normally 
distributed, in most cases our data are normally distributed. According to 
the central limit theorem, when a measurement is subject to a variety 
of indeterminate errors, the results for that measurement will approximate 

Practice Exercise 4.6
An analysis of seven aspirin tablets from a population known to have 
a standard deviation of 5, gives the following results in mg aspirin per 
tablet:

246     249     255     251     251     247     250
What is the 95% confidence interval for the population’s expected mean?
Click here when you are ready to review your answer.
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Table 4.13 Masses for a Sample of 100 Circulating U. S. Pennies
Penny Mass (g) Penny Mass (g) Penny Mass (g) Penny Mass (g)

1 3.126 26 3.073 51 3.101 76 3.086
2 3.140 27 3.084 52 3.049 77 3.123
3 3.092 28 3.148 53 3.082 78 3.115
4 3.095 29 3.047 54 3.142 79 3.055
5 3.080 30 3.121 55 3.082 80 3.057
6 3.065 31 3.116 56 3.066 81 3.097
7 3.117 32 3.005 57 3.128 82 3.066
8 3.034 33 3.115 58 3.112 83 3.113
9 3.126 34 3.103 59 3.085 84 3.102
10 3.057 35 3.086 60 3.086 85 3.033
11 3.053 36 3.103 61 3.084 86 3.112
12 3.099 37 3.049 62 3.104 87 3.103
13 3.065 38 2.998 63 3.107 88 3.198
14 3.059 39 3.063 64 3.093 89 3.103
15 3.068 40 3.055 65 3.126 90 3.126
16 3.060 41 3.181 66 3.138 91 3.111
17 3.078 42 3.108 67 3.131 92 3.126
18 3.125 43 3.114 68 3.120 93 3.052
19 3.090 44 3.121 69 3.100 94 3.113
20 3.100 45 3.105 70 3.099 95 3.085
21 3.055 46 3.078 71 3.097 96 3.117
22 3.105 47 3.147 72 3.091 97 3.142
23 3.063 48 3.104 73 3.077 98 3.031
24 3.083 49 3.146 74 3.178 99 3.083
25 3.065 50 3.095 75 3.054 100 3.104

Table 4.14 Frequency Distribution for the Data in Table 4.13
Mass Interval Frequency (as %) Mass Interval Frequency (as %)
2.991–3.009 2 3.105–3.123 19
3.010–3.028 0 3.124–3.142 12
3.029–3.047 4 3.143–3.161 3
3.048–3.066 19 3.162–3.180 1
3.067–3.085 14 3.181–3.199 2
3.086–3.104 24
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a normal distribution.6 The central limit theorem holds true even if the 
individual sources of indeterminate error are not normally distributed. The 
chief limitation to the central limit theorem is that the sources of indeter-
minate error must be independent and of similar magnitude so that no one 
source of error dominates the final distribution. 

An additional feature of the central limit theorem is that a distribu-
tion of means for samples drawn from a population with any distribution 
will approximate closely a normal distribution if the size of each sample is 
sufficiently large. For example, Figure 4.11 shows the distribution for two 
samples of 10 000 drawn from a uniform distribution in which every value 
between 0 and 1 occurs with an equal frequency. For samples of size n = 1, 
the resulting distribution closely approximates the population’s uniform 
distribution. The distribution of the means for samples of size n = 10, how-
ever, closely approximates a normal distribution.

DEGREES OF FREEDOM

Did you notice the differences between the equation for the variance of a 
population and the variance of a sample? If not, here are the two equations:
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Both equations measure the variance around the mean, using n for a popu-
lation and X  for a sample. Although the equations use different measures 
for the mean, the intention is the same for both the sample and the popu-

6 Mark, H.; Workman, J. Spectroscopy 1988, 3, 44–48.

2.95 3.00 3.05 3.10 3.15 3.20 3.25
Mass of Pennies (g)

Figure 4.10 The blue bars show a histogram for the data in Table 
4.13. The height of each bar corresponds to the percentage of pen-
nies within one of the mass intervals in Table 4.14. Superimposed 
on the histogram is a normal distribution curve based on the as-
sumption that n and v2 for the population are equivalent to X  
and s2 for the sample. The total area of the histogram’s bars and the 
area under the normal distribution curve are equal.

You might reasonably ask whether this 
aspect of the central limit theorem is 
important as it is unlikely that we will 
complete 10 000 analyses, each of which 
is the average of 10 individual trials. This 
is deceiving. When we acquire a sample 
of soil, for example, it consists of many 
individual particles each of which is an 
individual sample of the soil. Our analysis 
of this sample, therefore, gives the mean 
for this large number of individual soil 
particles. Because of this, the central limit 
theorem is relevant.
For a discussion of circumstances where 
the central limit theorem may not apply, 
see “Do You Reckon It’s Normally Dis-
tributed?”, the full reference for which is 
Majewsky, M.; Wagner, M.; Farlin, J. Sci. 
Total Environ. 2016, 548–549, 408–409.
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lation. A more interesting difference is between the denominators of the 
two equations. When we calculate the population’s variance we divide the 
numerator by the population’s size, n; for the sample’s variance, however, 
we divide by n – 1, where n is the sample’s size. Why do we divide by n – 1 
when we calculate the sample’s variance?

A variance is the average squared deviation of individual results rela-
tive to the mean. When we calculate an average we divide the sum by the 
number of independent measurements, or degrees of freedom, in the 
calculation. For the population’s variance, the degrees of freedom is equal 
to the population’s size, n. When we measure every member of a population 
we have complete information about the population.

When we calculate the sample’s variance, however, we replace m with 
X , which we also calculate using the same data. If there are n members in 
the sample, we can deduce the value of the nth member from the remaining 
n – 1 members and the mean. For example, if n = 5 and we know that the 
first four samples are 1, 2, 3 and 4, and that the mean is 3, then the fifth 
member of the sample must be

 
( )

( )
X X n X X X X

3 5 1 2 3 4 5
5 1 2 3 4#

#

= - - - - =

- - - - =

Because we have just four independent measurements, we have lost one 
degree of freedom. Using n – 1 in place of n when we calculate the sample’s 
variance ensures that s2 is an unbiased estimator of v2. 

Figure 4.11 Histograms for (a) 10 000 samples of size n = 1 drawn from a uniform distribution with a minimum value 
of 0 and a maximum value of 1, and (b) the means for 10 000 samples of size n = 10 drawn from the same uniform 
distribution. For (a) the mean of the 10 000 samples is 0.5042, and for (b) the mean of the 10 000 samples is 0.5006.  
Note that for (a) the distribution closely approximates a uniform distribution in which every possible result is equally 
likely, and that for (b) the distribution closely approximates a normal distribution.
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Here is another way to think about de-
grees of freedom. We analyze samples to 
make predictions about the underlying 
population. When our sample consists of 
n measurements we cannot make more 
than n independent predictions about 
the population. Each time we estimate a 
parameter, such as the population’s mean, 
we lose a degree of freedom. If there are 
n degrees of freedom for calculating the 
sample’s mean, then n – 1 degrees of free-
dom remain when we calculate the sam-
ple’s variance.
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4D.5 Confidence Intervals for Samples

Earlier we introduced the confidence interval as a way to report the most 
probable value for a population’s mean, n,

X
n

z!n v= 4.11

where X  is the mean for a sample of size n, and v is the population’s stan-
dard deviation. For most analyses we do not know the population’s standard 
deviation. We can still calculate a confidence interval, however, if we make 
two modifications to equation 4.11. 

The first modification is straightforward—we replace the population’s 
standard deviation, v, with the sample’s standard deviation, s. The second 
modification is not as obvious. The values of z in Table 4.12 are for a normal 
distribution, which is a function of v2, not s2. Although the sample’s vari-
ance, s2, is an unbiased estimate of the population’s variance, v2, the value 
of s2 will only rarely equal v2. To account for this uncertainty in estimating 
v2, we replace the variable z in equation 4.11 with the variable t, where t is 
defined such that t ≥ z at all confidence levels. 

X
n

ts!n= 4.12

Values for t at the 95% confidence level are shown in Table 4.15. Note that 
t becomes smaller as the number of degrees of freedom increases, and that 
it approaches z as n approaches infinity. The larger the sample, the more 
closely its confidence interval for a sample (equation 4.12) approaches the 
confidence interval for the population (equation 4.11). Appendix 4 pro-
vides additional values of t for other confidence levels. 

Table 4.15 Values of t for a 95% Confidence Interval
Degrees of 
Freedom t

Degrees of 
Freedom t

1 12.706 12 2.179
2 4.303 14 2.145
3 3.181 16 2.120
4 2.776 18 2.101
5 2.571 20 2.086
6 2.447 30 2.042
7 2.365 40 2.021
8 2.306 60 2.000
9 2.262 100 1.984
10 2.228 ∞ 1.960
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Example 4.15
What are the 95% confidence intervals for the two samples of pennies in 
Table 4.11?

SOLUTION

The mean and the standard deviation for first experiment are, respectively, 
3.117 g and 0.051 g. Because the sample consists of seven measurements, 
there are six degrees of freedom. The value of t from Table 4.15, is 2.447. 
Substituting into equation 4.12 gives

.
. .

. .3 117
7

2 447 0 051
3 117 0 047g

g
g g!

#
!n= =

For the second experiment the mean and the standard deviation are 
3.081 g and 0.073 g, respectively, with four degrees of freedom. The 95% 
confidence interval is

.
. .

. .3 081
5

2 776 0 037
3 081 0 046g

g
g g!

#
!n= =

Based on the first experiment, the 95% confidence interval for the popula-
tion’s mean is 3.070–3.164 g. For the second experiment, the 95% con-
fidence interval is 3.035–3.127 g. Although the two confidence intervals 
are not identical—remember, each confidence interval provides a different 
estimate for m—the mean for each experiment is contained within the 
other experiment’s confidence interval. There also is an appreciable overlap 
of the two confidence intervals. Both of these observations are consistent 
with samples drawn from the same population. 

Note that our comparison of these two 
confidence intervals at this point is some-
what vague and unsatisfying. We will 
return to this point in the next section, 
when we consider a statistical approach to 
comparing the results of experiments.

Practice Exercise 4.7
What is the 95% confidence interval for the sample of 100 pennies in 
Table 4.13? The mean and the standard deviation for this sample are 
3.095 g and 0.0346 g, respectively. Compare your result to the confi-
dence intervals for the samples of pennies in Table 4.11.
Click here when to review your answer to this exercise.

4D.6 A Cautionary Statement

There is a temptation when we analyze data simply to plug numbers into 
an equation, carry out the calculation, and report the result. This is never 
a good idea, and you should develop the habit of reviewing and evaluating 
your data. For example, if you analyze five samples and report an analyte’s 
mean concentration as 0.67 ppm with a standard deviation of 0.64 ppm, 
then the 95% confidence interval is

.
. .

. .0 67
5

2 776 0 64
0 67 0 79ppm

ppm
ppm ppm!

#
!n= =
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This confidence interval estimates that the analyte’s true concentration is 
between –0.12 ppm and 1.46 ppm. Including a negative concentration 
within the confidence interval should lead you to reevaluate your data or 
your conclusions. A closer examination of your data may convince you 
that the standard deviation is larger than expected, making the confidence 
interval too broad, or you may conclude that the analyte’s concentration is 
too small to report with confidence.

Here is a second example of why you should closely examine your data: 
results obtained on samples drawn at random from a normally distributed 
population must be random. If the results for a sequence of samples show 
a regular pattern or trend, then the underlying population either is not 
normally distributed or there is a time-dependent determinate error. For 
example, if we randomly select 20 pennies and find that the mass of each 
penny is greater than that for the preceding penny, then we might suspect 
that our balance is drifting out of calibration. 

4E Statistical Analysis of Data
A confidence interval is a useful way to report the result of an analysis 
because it sets limits on the expected result. In the absence of determinate 
error, a confidence interval based on a sample’s mean indicates the range of 
values in which we expect to find the population’s mean. When we report a 
95% confidence interval for the mass of a penny as 3.117 g ± 0.047 g, for 
example, we are stating that there is only a 5% probability that the penny’s 
expected mass is less than 3.070 g or more than 3.164 g. 

Because a confidence interval is a statement of probability, it allows 
us to consider comparative questions, such as these: “Are the results for a 
newly developed method to determine cholesterol in blood significantly 
different from those obtained using a standard method?” or “Is there a sig-
nificant variation in the composition of rainwater collected at different sites 
downwind from a coal-burning utility plant?” In this section we introduce 
a general approach to the statistical analysis of data. Specific statistical tests 
are presented in Section 4F.

4E.1 Significance Testing

Let’s consider the following problem. To determine if a medication is effec-
tive in lowering blood glucose concentrations, we collect two sets of blood 
samples from a patient. We collect one set of samples immediately before 
we administer the medication, and collect the second set of samples several 
hours later. After analyzing the samples, we report their respective means 
and variances. How do we decide if the medication was successful in lower-
ing the patient’s concentration of blood glucose? 

One way to answer this question is to construct a normal distribution 
curve for each sample, and to compare the two curves to each other. Three 

We will return to the topic of detection 
limits near the end of this chapter.

The reliability of significance testing re-
cently has received much attention—see 
Nuzzo, R. “Scientific Method: Statistical 
Errors,” Nature, 2014, 506, 150–152 for 
a general discussion of the issues—so it is 
appropriate to begin this section by not-
ing the need to ensure that our data and 
our research question are compatible so 
that we do not read more into a statistical 
analysis than our data allows; see Leek, J. 
T.; Peng, R. D. “What is the Question? 
Science, 2015, 347, 1314-1315 for a use-
ful discussion of six common research 
questions. 
In the context of analytical chemistry, 
significance testing often accompanies an 
exploratory data analysis (Is there a rea-
son to suspect that there is a difference 
between these two analytical methods 
when applied to a common sample?) or 
an inferential data analysis (Is there a rea-
son to suspect that there is a relationship 
between these two independent measure-
ments?). A statistically significant result 
for these types of analytical research ques-
tions generally leads to the design of addi-
tional experiments better suited to making 
predictions or to explaining an underlying 
causal relationship. A significance test is 
the first step toward building a greater un-
derstanding of an analytical problem, not 
the final answer to that problem.
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possible outcomes are shown in Figure 4.12. In Figure 4.12a, there is a 
complete separation of the two normal distribution curves, which suggests 
the two samples are significantly different from each other. In Figure 4.12b, 
the normal distribution curves for the two samples almost completely over-
lap, which suggests that the difference between the samples is insignificant. 
Figure 4.12c, however, presents us with a dilemma. Although the means 
for the two samples seem different, the overlap of their normal distribu-
tion curves suggests that a significant number of possible outcomes could 
belong to either distribution. In this case the best we can do is to make a 
statement about the probability that the samples are significantly different 
from each other. 

The process by which we determine the probability that there is a sig-
nificant difference between two samples is called significance testing or 
hypothesis testing. Before we discuss specific examples we will first establish 
a general approach to conducting and interpreting a significance test.

4E.2 Constructing a Significance Test

The purpose of a significance test is to determine whether the difference 
between two or more results is sufficiently large that it cannot be explained 
by indeterminate errors. The first step in constructing a significance test is 
to state the problem as a yes or no question, such as “Is this medication 
effective at lowering a patient’s blood glucose levels?” A null hypothesis 
and an alternative hypothesis define the two possible answers to our yes or 
no question. The null hypothesis, H0, is that indeterminate errors are 
sufficient to explain any differences between our results. The alternative 
hypothesis, HA, is that the differences in our results are too great to be 
explained by random error and that they must be determinate in nature. 
We test the null hypothesis, which we either retain or reject. If we reject 
the null hypothesis, then we must accept the alternative hypothesis and 
conclude that the difference is significant.

Failing to reject a null hypothesis is not the same as accepting it. We 
retain a null hypothesis because we have insufficient evidence to prove it 
incorrect. It is impossible to prove that a null hypothesis is true. This is an 
important point and one that is easy to forget. To appreciate this point let’s 
return to our sample of 100 pennies in Table 4.13. After looking at the data 
we might propose the following null and alternative hypotheses.

H0: The mass of a circulating U.S. penny is between 2.900 g–3.200 g.
HA:  The mass of a circulating U.S. penny may be less than 2.900 g or 

more than 3.200 g.
To test the null hypothesis we find a penny and determine its mass. If the 
penny’s mass is 2.512 g then we can reject the null hypothesis and accept 
the alternative hypothesis. Suppose that the penny’s mass is 3.162 g. Al-
though this result increases our confidence in the null hypothesis, it does 

Values

(a)

(b)

(c)
Values

Values
Figure 4.12 Three examples of 
the possible relationships between 
the normal distribution curves for 
two samples. In (a) the curves do 
not overlap, which suggests that 
the samples are significantly dif-
ferent from each other. In (b) the 
two curves are almost identical, 
suggesting the samples are indis-
tinguishable. The partial overlap 
of the curves in (c) means that 
the best we can do is evaluate the 
probability that there is a differ-
ence between the samples.
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not prove that the null hypothesis is correct because the next penny we 
sample might weigh less than 2.900 g or more than 3.200 g.

After we state the null and the alternative hypotheses, the second step 
is to choose a confidence level for the analysis. The confidence level defines 
the probability that we will reject the null hypothesis when it is, in fact, true. 
We can express this as our confidence that we are correct in rejecting the null 
hypothesis (e.g. 95%), or as the probability that we are incorrect in rejecting 
the null hypothesis. For the latter, the confidence level is given as a, where

1 100
confidence level (%)

a= -

For a 95% confidence level, a is 0.05. 
The third step is to calculate an appropriate test statistic and to compare 

it to a critical value. The test statistic’s critical value defines a breakpoint 
between values that lead us to reject or to retain the null hypothesis. How 
we calculate the test statistic depends on what we are comparing, a topic 
we cover in section 4F. The last step is to either retain the null hypothesis, 
or to reject it and accept the alternative hypothesis. 

4E.3 One-Tailed and Two-Tailed Significance Tests

Suppose we want to evaluate the accuracy of a new analytical method. We 
might use the method to analyze a Standard Reference Material that con-
tains a known concentration of analyte, n. We analyze the standard several 
times, obtaining a mean value, X , for the analyte’s concentration. Our null 
hypothesis is that there is no difference between X  and n

 :H X0 n=

If we conduct the significance test at a = 0.05, then we retain the null hy-
pothesis if a 95% confidence interval around X  contains n. If the alterna-
tive hypothesis is 

:H XA ! n

then we reject the null hypothesis and accept the alternative hypothesis if 
n lies in the shaded areas at either end of the sample’s probability distribu-
tion curve (Figure 4.13a). Each of the shaded areas accounts for 2.5% of 
the area under the probability distribution curve, for a total of 5%. This is 
a two-tailed significance test because we reject the null hypothesis for 
values of n at either extreme of the sample’s probability distribution curve.

We also can write the alternative hypothesis in two additional ways

:H X >A n

:H X <A n

rejecting the null hypothesis if n falls within the shaded areas shown in 
Figure 4.13b or Figure 4.13c, respectively. In each case the shaded area 

The four steps for a statistical analysis of 
data using a significance test:
1. Pose a question, and state the null 

hypothesis, H0, and the alternative 
hypothesis, HA.

3. Choose a confidence level for the sta-
tistical analysis.

3. Calculate an appropriate test statistic 
and compare it to a critical value.

4. Either retain the null hypothesis, or 
reject it and accept the alternative hy-
pothesis.

In this textbook we use a to represent the 
probability that we incorrectly reject the 
null hypothesis. In other textbooks this 
probability is given as p (often read as “p-
value”). Although the symbols differ, the 
meaning is the same.
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represents 5% of the area under the probability distribution curve. These 
are examples of a one-tailed significance test.

For a fixed confidence level, a two-tailed significance test is the more 
conservative test because rejecting the null hypothesis requires a larger dif-
ference between the parameters we are comparing. In most situations we 
have no particular reason to expect that one parameter must be larger (or 
must be smaller) than the other parameter. This is the case, for example, 
when we evaluate the accuracy of a new analytical method. A two-tailed 
significance test, therefore, usually is the appropriate choice. 

We reserve a one-tailed significance test for a situation where we specifi-
cally are interested in whether one parameter is larger (or smaller) than the 
other parameter. For example, a one-tailed significance test is appropriate if 
we are evaluating a medication’s ability to lower blood glucose levels. In this 
case we are interested only in whether the glucose levels after we administer 
the medication is less than the glucose levels before we initiated treatment. 
If the patient’s blood glucose level is greater after we administer the medica-
tion, then we know the answer—the medication did not work—and do not 
need to conduct a statistical analysis.

4E.4 Errors in Significance Testing

Because a significance test relies on probability, its interpretation is subject 
to error. In a significance test, a defines the probability of rejecting a null 
hypothesis that is true. When we conduct a significance test at a = 0.05, 
there is a 5% probability that we will incorrectly reject the null hypothesis. 
This is known as a type 1 error, and its risk is always equivalent to a. A 
type 1 error in a two-tailed or a one-tailed significance tests corresponds to 
the shaded areas under the probability distribution curves in Figure 4.13.

A second type of error occurs when we retain a null hypothesis even 
though it is false. This is as a type 2 error, and the probability of its oc-

Figure 4.13 Examples of (a) two-tailed, and (b, c) one-tailed, significance test of X  and n. The 
probability distribution curves, which are normal distributions, are based on the sample’s mean and 
standard deviation. For a = 0.05, the blue areas account for 5% of the area under the curve. If the 
value of n falls within the blue areas, then we reject the null hypothesis and accept the alternative 
hypothesis. We retain the null hypothesis if the value of n falls within the unshaded area of the curve.

(a) (b) (c)

Values Values Values

d
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currence is b. Unfortunately, in most cases we cannot calculate or estimate 
the value for b. The probability of a type 2 error, however, is inversely 
proportional to the probability of a type 1 error.  

Minimizing a type 1 error by decreasing a increases the likelihood of a 
type 2 error. When we choose a value for a we must compromise between 
these two types of error. Most of the examples in this text use a 95% con-
fidence level (a = 0.05) because this usually is a reasonable compromise 
between type 1 and type 2 errors for analytical work. It is not unusual, 
however, to use a more stringent (e.g. a = 0.01) or a more lenient (e.g. 
a = 0.10) confidence level when the situation calls for it.

4F Statistical Methods for Normal Distributions
The most common distribution for our results is a normal distribution. Be-
cause the area between any two limits of a normal distribution curve is well 
defined, constructing and evaluating significance tests is straightforward.

4F.1 Comparing X  to n

One way to validate a new analytical method is to analyze a sample that 
contains a known amount of analyte, n. To judge the method’s accuracy 
we analyze several portions of the sample, determine the average amount 
of analyte in the sample, X , and use a significance test to compare X  to 
n. Our null hypothesis is that the difference between X  and n is explained 
by indeterminate errors that affect the determination of X . The alterna-
tive hypothesis is that the difference between X  and n is too large to be 
explained by indeterminate error. 

The test statistic is texp, which we substitute into the confidence interval 
for n (equation 4.12).

X
n

t sexp
!n= 4.14

Rearranging this equation and solving for texp

t s
X n

exp
n

=
- 4.15

gives the value of texp when n is at either the right edge or the left edge of 
the sample’s confidence interval (Figure 4.14a). 

To determine if we should retain or reject the null hypothesis, we com-
pare the value of texp to a critical value, t(a, o), where a is the confidence 
level and o is the degrees of freedom for the sample. The critical value 
t(a, o) defines the largest confidence interval explained by indeterminate 
error. If texp > t(a, o), then our sample’s confidence interval is greater than 
that explained by indeterminate errors (Figure 4.14b). In this case, we reject 
the null hypothesis and accept the alternative hypothesis. If texp ≤ t(a, o), 
then our sample’s confidence interval is smaller than that explained by inde-

:H X0 n=

:H XA ! n

Values for t(a,o) are in Appendix 4.
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terminate error, and we retain the null hypothesis (Figure 4.14c). Example 
4.16 provides a typical application of this significance test, which is known 
as a t-test of X  to n.

Example 4.16
Before determining the amount of Na2CO3 in a sample, you decide to 
check your procedure by analyzing a standard sample that is 98.76% w/w 
Na2CO3. Five replicate determinations of the %w/w Na2CO3 in the stan-
dard gave the following results.

98.71%    98.59%    98.62%    98.44%    98.58%

Using a = 0.05, is there any evidence that the analysis is giving inaccurate 
results?

SOLUTION

The mean and standard deviation for the five trials are

X  = 98.59                 s = 0.0973

Because there is no reason to believe that the results for the standard must 
be larger or smaller than n, a two-tailed t-test is appropriate. The null 
hypothesis and alternative hypothesis are

   : :H X H X0 A !n n=             

The test statistic, texp, is

X
t s

n
� expX

t s

n
 exp X

t s

n
 exp X

t s

n
 expX

t s

n
� exp X

t s

n
� exp

(a) (b) (c)

X t s
n


( , )A N

X t s
n

�
( , )A NX t s

n
�

( , )A N X t s
n


( , )A N

Figure 4.14 Relationship between a confidence interval and the result of a significance test. (a) The shaded area 
under the normal distribution curve shows the sample’s confidence interval for n based on texp. The solid bars 
in (b) and (c) show the expected confidence intervals for n explained by indeterminate error given the choice of 
a and the available degrees of freedom, o. For (b) we reject the null hypothesis because portions of the sample’s 
confidence interval fall outside the confidence interval explained by indeterminate error. In the case of (c) we retain 
the null hypothesis because the confidence interval explained by indeterminate error completely encompasses the 
sample’s confidence interval.

Another name for the t-test is Student’s 
t-test. Student was the pen name for Wil-
liam Gossett (1876-1927) who developed 
the t-test while working as a statistician 
for the Guiness Brewery in Dublin, Ire-
land. He published under the name Stu-
dent because the brewery did not want 
its competitors to know they were using 
statistics to help improve the quality of 
their products.
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.
. . .t s

X n
0 0973

98 76 98 59 5 3 91exp
n

=
-

=
-

=

The critical value for t(0.05,4) from Appendix 4 is 2.78. Since texp is greater 
than t(0.05, 4), we reject the null hypothesis and accept the alternative hy-
pothesis. At the 95% confidence level the difference between X  and n is 
too large to be explained by indeterminate sources of error, which suggests 
there is a determinate source of error that affects the analysis. 

There is another way to interpret the result 
of this t-test. Knowing that texp is 3.91 
and that there are 4 degrees of freedom, 
we use Appendix 4 to estimate the a value 
corresponding to a t(a,4) of 3.91. From 
Appendix 4, t(0.02,4) is 3.75 and t(0.01, 
4) is 4.60. Although we can reject the null 
hypothesis at the 98% confidence level, 
we cannot reject it at the 99% confidence 
level.
For a discussion of the advantages of this 
approach, see J. A. C. Sterne and G. D. 
Smith “Sifting the evidence—what’s 
wrong with significance tests?” BMJ 
2001, 322, 226–231.

Practice Exercise 4.8
To evaluate the accuracy of a new analytical method, an analyst deter-
mines the purity of a standard for which n is 100.0%, obtaining the 
following results.

99.28%  103.93%   99.43%   99.84%   97.60%   96.70%   98.02%

Is there any evidence at a = 0.05 that there is a determinate error affect-
ing the results?
Click here to review your answer to this exercise.

Earlier we made the point that we must exercise caution when we in-
terpret the result of a statistical analysis. We will keep returning to this 
point because it is an important one. Having determined that a result is 
inaccurate, as we did in Example 4.16, the next step is to identify and to 
correct the error. Before we expend time and money on this, however, we 
first should examine critically our data. For example, the smaller the value 
of s, the larger the value of texp. If the standard deviation for our analysis is 
unrealistically small, then the probability of a type 2 error increases. Includ-
ing a few additional replicate analyses of the standard and reevaluating the 
t-test may strengthen our evidence for a determinate error, or it may show 
us that there is no evidence for a determinate error.

 4F.2 Comparing s2 to v2

If we analyze regularly a particular sample, we may be able to establish an 
expected variance, v2, for the analysis. This often is the case, for example, 
in a clinical lab that analyze hundreds of blood samples each day. A few 
replicate analyses of a single sample gives a sample variance, s2, whose value 
may or may not differ significantly from v2. 

We can use an F-test to evaluate whether a difference between s2 and 
v2 is significant. The null hypothesis is :H s0

2 2v=  and the alternative hy-
pothesis is :H s2 2

A ! v . The test statistic for evaluating the null hypothesis 
is Fexp, which is given as either

F s s F s sif or if> >exp exp2

2
2 2

2

2
2 2

v
v v v= = 4.16



104 Analytical Chemistry 2.1

depending on whether s2 is larger or smaller than v2. This way of defining 
Fexp ensures that its value is always greater than or equal to one.

If the null hypothesis is true, then Fexp should equal one; however, 
because of indeterminate errors Fexp usually is greater than one. A critical 
value, F(a, onum, oden), is the largest value of Fexp that we can attribute to 
indeterminate error given the specified significance level, a, and the degrees 
of freedom for the variance in the numerator, onum, and the variance in 
the denominator, oden. The degrees of freedom for s2 is n – 1, where n is 
the number of replicates used to determine the sample’s variance, and the 
degrees of freedom for v2 is defined as infinity, ∞. Critical values of F for 
a = 0.05 are listed in Appendix 5 for both one-tailed and two-tailed F-tests.

Example 4.17
A manufacturer’s process for analyzing aspirin tablets has a known vari-
ance of 25. A sample of 10 aspirin tablets is selected and analyzed for the 
amount of aspirin, yielding the following results in mg aspirin/tablet.

254    249    252    252    249    249    250    247    251    252

Determine whether there is evidence of a significant difference between 
the sample’s variance and the expected variance at a=0.05.

SOLUTION

The variance for the sample of 10 tablets is 4.3. The null hypothesis and 
alternative hypotheses are

: :H s H s0
2 2 2 2

A !v v=       

and the value for Fexp is

. .F s 4 3
25 5 8exp 2

2v= = =    

The critical value for F(0.05, ∞, 9) from Appendix 5 is 3.333. Since Fexp 
is greater than F(0.05, ∞, 9), we reject the null hypothesis and accept the 
alternative hypothesis that there is a significant difference between the 
sample’s variance and the expected variance. One explanation for the dif-
ference might be that the aspirin tablets were not selected randomly. 

4F.3 Comparing Two Sample Variances

We can extend the F-test to compare the variances for two samples, A and 
B, by rewriting equation 4.16 as

F s
s

exp
B

A
2

2

=

defining A and B so that the value of Fexp is greater than or equal to 1. 
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Example 4.18
Table 4.11 shows results for two experiments to determine the mass of 
a circulating U.S. penny. Determine whether there is a difference in the 
variances of these analyses at a = 0.05.

SOLUTION

The variances for the two experiments are 0.00259 for the first experiment 
(A) and 0.00138 for the second experiment (B). The null and alternative 
hypotheses are

         : :H s s H s sA B A B0
2 2 2 2

A !=

and the value of Fexp is

( . )
( . )

.

. .F s
s

0 037
0 051

0 0013
0 002 1 907

60
exp

B

A
2

2

2

2

= = = =

From Appendix 5, the critical value for F(0.05, 6, 4) is 9.197. Because 
Fexp < F(0.05, 6, 4), we retain the null hypothesis. There is no evidence at 
a = 0.05 to suggest that the difference in variances is significant.

Practice Exercise 4.9
To compare two production lots of aspirin tablets, we collect ana analyze 
samples from each, obtaining the following results (in mg aspirin/tablet).
Lot 1: 256    248    245    245    244    248    261
Lot 2: 241    258    241    244    256    254
Is there any evidence at a = 0.05 that there is a significant difference in 
the variances for these two samples?
Click here to review your answer to this exercise.

4F.4 Comparing Two Sample Means

Three factors influence the result of an analysis: the method, the sample, 
and the analyst. We can study the influence of these factors by conducting 
experiments in which we change one factor while holding constant the 
other factors. For example, to compare two analytical methods we can have 
the same analyst apply each method to the same sample and then examine 
the resulting means. In a similar fashion, we can design experiments to 
compare two analysts or to compare two samples. 

Before we consider the significance tests for comparing the means of 
two samples, we need to make a distinction between unpaired data and 
paired data. This is a critical distinction and learning to distinguish between 
these two types of data is important. Here are two simple examples that 
highlight the difference between unpaired data and paired data. In each 
example the goal is to compare two balances by weighing pennies.

It also is possible to design experiments 
in which we vary more than one of these 
factors. We will return to this point in 
Chapter 14.
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t��&YBNQMF����8F�DPMMFDU����QFOOJFT�BOE�XFJHI�FBDI�QFOOZ�PO�FBDI�
balance. This is an example of paired data because we use the same 
10 pennies to evaluate each balance.

t� &YBNQMF����8F�DPMMFDU����QFOOJFT�BOE�EJWJEF�UIFN�JOUP�UXP�HSPVQT�
of five pennies each. We weight the pennies in the first group on 
one balance and we weigh the second group of pennies on the other 
balance. Note that no penny is weighed on both balances. This is an 
example of unpaired data because we evaluate each balance using a 
different sample of pennies.

In both examples the samples of 10 pennies were drawn from the same 
population; the difference is how we sampled that population. We will learn 
why this distinction is important when we review the significance test for 
paired data; first, however, we present the significance test for unpaired data. 

UNPAIRED DATA

Consider two analyses, A and B with means of X A  and X B , and standard 
deviations of sA and sB. The confidence intervals for nA and for nB are

X
n

ts
A A

A

A!n = 4.17

X
n

ts
B B

B

B!n = 4.18

where nA and nB are the sample sizes for A and for B. Our null hypothesis, 
:H A B0 n n= , is that and any difference between nA and nB is the result 

of indeterminate errors that affect the analyses. The alternative hypothesis, 
:H A BA !n n , is that the difference between nA and nB is too large to be 

explained by indeterminate error.
To derive an equation for texp, we assume that nA equals nB, and com-

bine equations 4.17 and 4.18.

X
n

t s X
n

t sexp exp
A

A

A
B

B

B
! !=

Solving for X XA B-  and using a propagation of uncertainty, gives

X X t n
s

n
s

expA B
A

A

B

B
2 2

#- = + 4.19

Finally, we solve for texp

t
n
s

n
s

X X
exp

A

A

B

B

A B

2 2=
+

-
4.20

and compare it to a critical value, t(a, o), where a is the probability of a 
type 1 error, and o is the degrees of freedom. 

Thus far our development of this t-test is similar to that for comparing  
X  to n, and yet we do not have enough information to evaluate the t-test. 

One simple test for determining whether 
data are paired or unpaired is to look at 
the size of each sample. If the samples 
are of different size, then the data must 
be unpaired. The converse is not true. If 
two samples are of equal size, they may be 
paired or unpaired.

Problem 9 asks you to use a propagation 
of uncertainty to show that equation 4.19 
is correct.
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Do you see the problem? With two independent sets of data it is unclear 
how many degrees of freedom we have. 

Suppose that the variances sA
2  and sB

2  provide estimates of the same v2. 
In this case we can replace sA

2   and sB
2  with a pooled variance, s2

pool , that is a 
better estimate for the variance. Thus, equation 4.20 becomes

t
s n n

X X
s

X X
n n

n n
1 1exp

A B

A B A B

A B

A B

pool
pool#

#=
+

-
=

-
+ 4.21

where spool , the pooled standard deviation, is
( ) ( )s n n
n s n s

2
1 1

A B

A A B B
2 2

pool= + -
- + - 4.22

The denominator of equation 4.22 shows us that the degrees of freedom 
for a pooled standard deviation is nA + nB – 2, which also is the degrees of 
freedom for the t-test. Note that we lose two degrees of freedom because 
the calculations for sA

2  and sB
2  require the prior calculation of X A  and X B .

If sA
2  and sB

2  are significantly different, then we calculate texp using equa-
tion 4.20. In this case, we find the degrees of freedom using the following 
imposing equation.

n
n
s

n
n
s

n
s

n
s

1 1

2

A

A

A

B

B

B

A

A

B

B

2 2 2 2

2 2 2

o=

+ + +

+
-a

a
ak
k
k 4.23

Because the degrees of freedom must be an integer, we round to the nearest 
integer the value of n obtained using equation 4.23.

Regardless of whether we calculate texp using equation 4.20 or equation 
4.21, we reject the null hypothesis if texp is greater than t(a, o) and retain 
the null hypothesis if texp is less than or equal to t(a, o).

Example 4.19
Tables 4.11 provides results for two experiments to determine the mass of 
a circulating U.S. penny. Determine whether there is a difference in the 
means of these analyses at a = 0.05.

SOLUTION

First we use an F-test to determine whether we can pool the variances. 
We completed this analysis in Example 4.18, finding no evidence of a 
significant difference, which means we can pool the standard deviations, 
obtaining

( ) ( . ) ( ) ( . ) .s 7 5 2
7 1 0 0 5 1 0 0 0 045951 372 2

pool= + -
- + -

=

with 10 degrees of freedom. To compare the means we use the following 
null hypothesis and alternative hypotheses

So how do you determine if it is okay to 
pool the variances? Use an F-test.
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       : :H HA B A B0 A !n n n n=

Because we are using the pooled standard deviation, we calculate texp using 
equation 4.21.

.
. . .t 0 0459

3 117 3 081
7 5
7 5 1 34exp # #=

-
+ =

The critical value for t(0.05, 10), from Appendix 4, is 2.23. Because texp 
is less than t(0.05, 10) we retain the null hypothesis. For a = 0.05 we do 
not have evidence that the two sets of pennies are significantly different.

Example 4.20
One method for determining the %w/w Na2CO3 in soda ash is to use an 
acid–base titration. When two analysts analyze the same sample of soda 
ash they obtain the results shown here. 

Analyst A Analyst B
86.82 81.01
87.04 86.15
86.93 81.73
87.01 83.19
86.20 80.27
87.00 83.93

Determine whether the difference in the mean values is significant at 
a = 0.05.

SOLUTION

We begin by reporting the mean and standard deviation for each analyst. 
. .
. .

X s
X s

86 83 0 32
82 71 2 16

%
%

A A

B A

= =

= =

To determine whether we can use a pooled standard deviation, we first 
complete an F-test using the following null and alternative hypotheses.

   : :H s s H s sA B A B0
2 2 2 2

A !=   

Calculating Fexp, we obtain a value of

( . )
( . ) .F 0 32
2 16 45 6exp 2

2

= =

Because Fexp is larger than the critical value of 7.15 for F(0.05, 5, 5) from 
Appendix 5, we reject the null hypothesis and accept the alternative hy-
pothesis that there is a significant difference between the variances; thus, 
we cannot calculate a pooled standard deviation.
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To compare the means for the two analysts we use the following null and 
alternative hypotheses.

: :H HA B A B0 A !n n n n=    

Because we cannot pool the standard deviations, we calculate texp using 
equation 4.20 instead of equation 4.21

( . ) ( . )
. . .t

6
0 32

6
2 16

86 83 82 71 4 62exp 2 2=
+

-
=

and calculate the degrees of freedom using equation 4.23.

( . ) ( . )

( . ) ( . )
.

6 1
6

0 32

6 1
6

2 16
6

0 32
6

2 16
2 5 3 52 2

2 2 2

2 2 .o=

+ + +

+
- =a

a
ak

k
k

From Appendix 4, the critical value for t(0.05, 5) is 2.57. Because texp 
is greater than t(0.05, 5) we reject the null hypothesis and accept the al-
ternative hypothesis that the means for the two analysts are significantly 
different at a = 0.05.

Practice Exercise 4.10
To compare two production lots of aspirin tablets, you collect samples 
from each and analyze them, obtaining the following results (in mg as-
pirin/tablet).
Lot 1: 256    248    245    245    244    248    261
Lot 2: 241    258    241    244    256    254
Is there any evidence at a = 0.05 that there is a significant difference in 
the variance between the results for these two samples? This is the same 
data from Practice Exercise 4.9.
Click here to review your answer to this exercise.

PAIRED DATA

Suppose we are evaluating a new method for monitoring blood glucose 
concentrations in patients. An important part of evaluating a new method 
is to compare it to an established method. What is the best way to gath-
er data for this study? Because the variation in the blood glucose levels 
amongst patients is large we may be unable to detect a small, but significant 
difference between the methods if we use different patients to gather data 
for each method. Using paired data, in which the we analyze each patient’s 
blood using both methods, prevents a large variance within a population 
from adversely affecting a t-test of means.

Typical blood glucose levels for most 
non-diabetic individuals ranges between 
80–120 mg/dL (4.4–6.7 mM), rising to as 
high as 140 mg/dL (7.8 mM) shortly after 
eating. Higher levels are common for indi-
viduals who are pre-diabetic or diabetic.
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When we use paired data we first calculate the difference, di, between 
the paired values for each sample. Using these difference values, we then 
calculate the average difference, d , and the standard deviation of the dif-
ferences, sd. The null hypothesis, :H d 00 = , is that there is no difference 
between the two samples, and the alternative hypothesis, :H d 0A ! , is that 
the difference between the two samples is significant.

The test statistic, texp, is derived from a confidence interval around d

t s
d n

exp
d

=

where n is the number of paired samples. As is true for other forms of the 
t-test, we compare texp to t(a, o), where the degrees of freedom, o, is n – 1. 
If texp is greater than t(a, o), then we reject the null hypothesis and accept 
the alternative hypothesis. We retain the null hypothesis if texp is less than 
or equal to t(a, o). This is known as a paired t-test.

Example 4.21
Marecek et. al. developed a new electrochemical method for the rapid de-
termination of the concentration of the antibiotic monensin in fermenta-
tion vats.7 The standard method for the analysis is a test for microbiological 
activity, which is both difficult to complete and time-consuming. Samples 
were collected from the fermentation vats at various times during produc-
tion and analyzed for the concentration of monensin using both methods. 
The results, in parts per thousand (ppt), are reported in the following table.

Sample Microbiological Electrochemical
1 129.5 132.3
2 89.6 91.0
3 76.6 73.6
4 52.2 58.2
5 110.8 104.2
6 50.4 49.9
7 72.4 82.1
8 141.4 154.1
9 75.0 73.4
10 34.1 38.1
11 60.3 60.1

Is there a significant difference between the methods at a = 0.05?

SOLUTION

Acquiring samples over an extended period of time introduces a substantial 
time-dependent change in the concentration of monensin. Because the 

7 Marecek, V.; Janchenova, H.; Brezina, M.; Betti, M. Anal. Chim. Acta 1991, 244, 15–19.
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variation in concentration between samples is so large, we use a paired t-
test with the following null and alternative hypotheses.

: :H d H d0 00 A !=  

Defining the difference between the methods as

( )d X Xi i ielect micro= -^ h
we calculate the difference for each sample.

Sample 1 2 3 4 5 6 7 8 9 10 11
di 2.8 1.4 –3.0 6.0 –6.6 –0.5 9.7 12.7 –1.6 4.0 –0.2

The mean and the standard deviation for the differences are, respectively, 
2.25 ppt and 5.63 ppt. The value of texp is

.
. .t 5 63

2 25 11 1 33exp= =

which is smaller than the critical value of 2.23 for t(0.05, 10) from Appen-
dix 4. We retain the null hypothesis and find no evidence for a significant 
difference in the methods at a = 0.05.

One important requirement for a paired t-test is that the determinate 
and the indeterminate errors that affect the analysis must be independent 
of the analyte’s concentration. If this is not the case, then a sample with 
an unusually high concentration of analyte will have an unusually large di. 
Including this sample in the calculation of d and sd gives a biased estimate 
for the expected mean and standard deviation. This rarely is a problem for 
samples that span a limited range of analyte concentrations, such as those 
in Example 4.21 or Practice Exercise 4.11. When paired data span a wide 
range of concentrations, however, the magnitude of the determinate and 
indeterminate sources of error may not be independent of the analyte’s con-

Practice Exercise 4.11
Suppose you are studying the distribution of zinc in a 
lake and want to know if there is a significant difference 
between the concentration of Zn2+ at the sediment-
water interface and its concentration at the air-water 
interface. You collect samples from six locations—near 
the lake’s center, near its drainage outlet, etc.—obtain-
ing the results (in mg/L) shown in the table. Using this 
data, determine if there is a significant difference be-
tween the concentration of Zn2+ at the two interfaces 
at a = 0.05. 
Complete this analysis treating the data as (a) unpaired and as (b) paired. Briefly comment on your results.
Click here to review your answers to this exercise.

Location Air-Water 
Interface

Sediment-Water 
Interface

1 0.430 0.415
2 0.266 0.238
3 0.457 0.390
4 0.531 0.410
5 0.707 0.605
6 0.716 0.609
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centration; when true, a paired t-test may give misleading results because 
the paired data with the largest absolute determinate and indeterminate 
errors will dominate d . In this situation a regression analysis, which is the 
subject of the next chapter, is more appropriate method for comparing the 
data.

4F.5 Outliers

Earlier in the chapter we examined several data sets consisting of the mass 
of a circulating United States penny. Table 4.16 provides one more data set. 
Do you notice anything unusual in this data? Of the 112 pennies included 
in Table 4.11 and Table 4.13, no penny weighed less than 3 g. In Table 4.16, 
however, the mass of one penny is less than 3 g. We might ask whether this 
penny’s mass is so different from the other pennies that it is in error.

A measurement that is not consistent with other measurements is called 
outlier. An outlier might exist for many reasons: the outlier might belong 
to a different population (Is this a Canadian penny?); the outlier might 
be a contaminated or otherwise altered sample (Is the penny damaged or 
unusually dirty?); or the outlier may result from an error in the analysis 
(Did we forget to tare the balance?). Regardless of its source, the presence 
of an outlier compromises any meaningful analysis of our data. There are 
many significance tests that we can use to identify a potential outlier, three 
of which we present here. 

DIXON’S Q-TEST

One of the most common significance tests for identifying an outlier is 
Dixon’s Q-test. The null hypothesis is that there are no outliers, and the 
alternative hypothesis is that there is an outlier. The Q-test compares the 
gap between the suspected outlier and its nearest numerical neighbor to the 
range of the entire data set (Figure 4.15). The test statistic, Qexp, is

Q range
gap

largest value smallest value
outlier's value nearest value

exp= = -
-

This equation is appropriate for evaluating a single outlier. Other forms of 
Dixon’s Q-test allow its extension to detecting multiple outliers.8 

The value of Qexp is compared to a critical value, Q(a, n), where a is the 
probability that we will reject a valid data point (a type 1 error) and n is the 
total number of data points. To protect against rejecting a valid data point, 
usually we apply the more conservative two-tailed Q-test, even though the 

8 Rorabacher, D. B. Anal. Chem. 1991, 63, 139–146.

Table 4.16  Mass (g) for Additional Sample of Circulating U. S. Pennies
3.067 2.514 3.094
3.049 3.048 3.109
3.039 3.079 3.102
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possible outlier is the smallest or the largest value in the data set. If Qexp is 
greater than Q(a, n), then we reject the null hypothesis and may exclude 
the outlier. We retain the possible outlier when Qexp is less than or equal 
to Q(a, n). Table 4.17 provides values for Q(0.05, n) for a data set that has 
3–10 values. A more extensive table is in Appendix 6. Values for Q(a, n) 
assume an underlying normal distribution.

GRUBB’S TEST

Although Dixon’s Q-test is a common method for evaluating outliers, it 
is no longer favored by the International Standards Organization (ISO), 
which recommends Grubb’s test.9 There are several versions of Grubb’s 
test depending on the number of potential outliers. Here we will consider 
the case where there is a single suspected outlier.

The test statistic for Grubb’s test, Gexp, is the distance between the 
sample’s mean, X , and the potential outlier, Xout, in terms of the sample’s 
standard deviation, s.

G s
X X

exp
out

=
-

We compare the value of Gexp to a critical value G(a, n), where a is the 
probability that we will reject a valid data point and n is the number of data 
points in the sample. If Gexp is greater than G(a, n), then we may reject the 
data point as an outlier, otherwise we retain the data point as part of the 
sample. Table 4.18 provides values for G(0.05, n) for a sample containing 
3–10 values. A more extensive table is in Appendix 7. Values for G(a, n) 
assume an underlying normal distribution.

9 International Standards ISO Guide 5752-2 “Accuracy (trueness and precision) of measurement 
methods and results–Part 2: basic methods for the determination of repeatability and reproduc-
ibility of a standard measurement method,” 1994.

Figure 4.15 Dotplots showing the distribution of two data sets containing a pos-
sible outlier. In (a) the possible outlier’s value is larger than the remaining data, 
and in (b) the possible outlier’s value is smaller than the remaining data.

Gap

Gap

Range

Range

(a)

(b)

d

Table 4.17 Dixon’s Q-Test
n Q(0.05, n)
3 0.970
4 0.829
5 0.710
6 0.625
7 0.568
8 0.526
9 0.493
10 0.466

Table 4.18 Grubb’s Test
n G(0.05, n)
3 1.115
4 1.481
5 1.715
6 1.887
7 2.020
8 2.126
9 2.215
10 2.290
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CHAUVENET’S CRITERION

Our final method for identifying an outlier is Chauvenet’s criterion. 
Unlike Dixon’s Q-Test and Grubb’s test, you can apply this method to any 
distribution as long as you know how to calculate the probability for a 
particular outcome. Chauvenet’s criterion states that we can reject a data 
point if the probability of obtaining the data point’s value is less than (2n)–1, 
where n is the size of the sample. For example, if n = 10, a result with a 
probability of less than (2×10)–1, or 0.05, is considered an outlier. 

To calculate a potential outlier’s probability we first calculate its stan-
dardized deviation, z

z s
X Xout

=
-

where Xout is the potential outlier, X is the sample’s mean and s is the sam-
ple’s standard deviation. Note that this equation is identical to the equation 
for Gexp in the Grubb’s test. For a normal distribution, we can find the prob-
ability of obtaining a value of z using the probability table in Appendix 3.

Example 4.22
Table 4.16 contains the masses for nine circulating United States pennies. 
One entry, 2.514 g, appears to be an outlier. Determine if this penny is 
an outlier using a Q-test, Grubb’s test, and Chauvenet’s criterion. For the 
Q-test and Grubb’s test, let a = 0.05.

SOLUTION

For the Q-test the value for Qexp is

. .

. . .Q 3 109 2 514
2 514 3 039 0 882exp= -

-
=

From Table 4.17, the critical value for Q(0.05, 9) is 0.493. Because Qexp is 
greater than Q(0.05, 9), we can assume the penny with a mass of 2.514 g 
likely is an outlier.

For Grubb’s test we first need the mean and the standard deviation, which 
are 3.011 g and 0.188 g, respectively. The value for Gexp is

.
. . .G 0 188

2 514 3 011 2 64exp=
-

=

Using Table 4.18, we find that the critical value for G(0.05, 9) is 2.215. 
Because Gexp is greater than G(0.05, 9), we can assume that the penny with 
a mass of 2.514 g likely is an outlier.

For Chauvenet’s criterion, the critical probability is (2×9)–1, or 0.0556. 
The value of z is the same as Gexp, or 2.64. Using Appendix 3, the prob-
ability for z = 2.64 is 0.00415. Because the probability of obtaining a mass 
of 0.2514 g is less than the critical probability, we can assume the penny 
with a mass of 2.514 g likely is an outlier. 
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You should exercise caution when using a significance test for outliers 
because there is a chance you will reject a valid result. In addition, you 
should avoid rejecting an outlier if it leads to a precision that is much better 
than expected based on a propagation of uncertainty. Given these concerns 
it is not surprising that some statisticians caution against the removal of 
outliers.10 

On the other hand, testing for outliers can provide useful information 
if we try to understand the source of the suspected outlier. For example, the 
outlier in Table 4.16 represents a significant change in the mass of a penny 
(an approximately 17% decrease in mass), which is the result of a change 
in the composition of the U.S. penny. In 1982 the composition of a U.S. 
penny changed from a brass alloy that was 95% w/w Cu and 5% w/w Zn 
(with a nominal mass of 3.1 g), to a pure zinc core covered with copper 
(with a nominal mass of 2.5 g).11 The pennies in Table 4.16, therefore, were 
drawn from different populations.

4G Detection Limits
The International Union of Pure and Applied Chemistry (IUPAC) defines 
a method’s detection limit as the smallest concentration or absolute 
amount of analyte that has a signal significantly larger than the signal from 
a suitable blank.12 Although our interest is in the amount of analyte, in this 
section we will define the detection limit in terms of the analyte’s signal. 
Knowing the signal you can calculate the analyte’s concentration, CA, or 
the moles of analyte, nA, using the equations

SA = kACA   or   SA = kAnA

where k is the method’s sensitivity.
Let’s translate the IUPAC definition of the detection limit into a math-

ematical form by letting Smb represent the average signal for a method blank, 
and letting vmb represent the method blank’s standard deviation. The null 
hypothesis is that the analyte is not present in the sample, and the alterna-
tive hypothesis is that the analyte is present in the sample. To detect the 
analyte, its signal must exceed Smb by a suitable amount; thus,  

( )S S zA mb mbDL v= + 4.24
where (SA)DL is the analyte’s detection limit. 

The value we choose for z depends on our tolerance for reporting the 
analyte’s concentration even if it is absent from the sample (a type 1 error). 
Typically, z is set to three, which, from Appendix 3, corresponds to a prob-
ability, a, of 0.00135. As shown in Figure 4.16a, there is only a 0.135% 
probability of detecting the analyte in a sample that actually is analyte-free. 

10 Deming, W. E. Statistical Analysis of Data; Wiley: New York, 1943 (republished by Dover: New 
York, 1961); p. 171.

11 Richardson, T. H. J. Chem. Educ. 1991, 68, 310–311.
12 IUPAC Compendium of Chemical Technology, Electronic Version, http://goldbook.iupac.org/

D01629.html

You also can adopt a more stringent re-
quirement for rejecting data. When using 
the Grubb’s test, for example, the ISO 
5752 guidelines suggests retaining a value 
if the probability for rejecting it is greater 
than a = 0.05, and flagging a value as a 
“straggler” if the probability for rejecting 
it is between a = 0.05 and 0.01. A “strag-
gler” is retained unless there is compelling 
reason for its rejection. The guidelines rec-
ommend using a = 0.01 as the minimum 
criterion for rejecting a possible outlier.

See Chapter 3 for a review of these equa-
tions.

If vmb is not known, we can replace it 
with smb; equation 4.24 then becomes

 ( )S S tsA mb mbDL !=

You can make similar adjustments to oth-
er equations in this section.
See, for example, Kirchner, C. J. “Estima-
tion of Detection Limits for Environmen-
tal Analytical Procedures,” in Currie, L. 
A. (ed) Detection in Analytical Chemistry: 
Importance, Theory, and Practice; Ameri-
can Chemical Society: Washington, D. 
C., 1988.
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A detection limit also is subject to a type 2 error in which we fail to find 
evidence for the analyte even though it is present in the sample. Consider, 
for example, the situation shown in Figure 4.16b where the signal for a 
sample that contains the analyte is exactly equal to (SA)DL. In this case the 
probability of a type 2 error is 50% because half of the sample’s possible 
signals are below the detection limit. We correctly detect the analyte at the 
IUPAC detection limit only half the time. The IUPAC definition for the 
detection limit is the smallest signal for which we can say, at a significance 
level of a, that an analyte is present in the sample; however, failing to detect 
the analyte does not mean it is not present in the sample.

The detection limit often is represented, particularly when discussing 
public policy issues, as a distinct line that separates detectable concentra-
tions of analytes from concentrations we cannot detect. This use of a detec-
tion limit is incorrect.13 As suggested by Figure 4.16, for an analyte whose 
concentration is near the detection limit there is a high probability that we 
will fail to detect the analyte. 

An alternative expression for the detection limit, the limit of identi-
fication, minimizes both type 1 and type 2 errors.14 The analyte’s signal 
at the limit of identification, (SA)LOI, includes an additional term, zvA, to 
account for the distribution of the analyte’s signal.

( ) ( )S S z S z zA A A mb mb ALOI DL v v v= + = + +

13 Rogers, L. B. J. Chem. Educ. 1986, 63, 3–6.
14 Long, G. L.; Winefordner, J. D. Anal. Chem. 1983, 55, 712A–724A.

Figure 4.16 Normal distribution curves showing the probability of type 1 and type 2 errors for the IUPAC detection 
limit. (a) The normal distribution curve for the method blank, with Smb = 0 and vmb = 1. The minimum detectable signal 
for the analyte, (SA)DL, has a type 1 error of 0.135%. (b) The normal distribution curve for the analyte at its detection 
limit, (SA)DL = 3, is superimposed on the normal distribution curve for the method blank. The standard deviation for 
the analyte’s signal, vA, is  0.8, The area in green represents the probability of a type 2 error, which is 50%. The inset 
shows, in blue, the probability of a type 1 error, which is 0.135%.

Smb (SA)DL = Smb + 3mmb

Type 1 Error = 0.135%

Type 2 Error = 50.0%

Smb (SA)DL = Smb + 3mmb

Type 1 Error = 0.135%

(a) (b)

d
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As shown in Figure 4.17, the limit of identification provides an equal proba-
bility of a type 1 and a type 2 error at the detection limit. When the analyte’s 
concentration is at its limit of identification, there is only a 0.135% prob-
ability that its signal is indistinguishable from that of the method blank. 

The ability to detect the analyte with confidence is not the same as 
the ability to report with confidence its concentration, or to distinguish 
between its concentration in two samples. For this reason the American 
Chemical Society’s Committee on Environmental Analytical Chemistry 
recommends the limit of quantitation, (SA)LOQ.15 

( )S S 10A mb mbLOQ v= +

4H Using Excel and R to Analyze Data
Although the calculations in this chapter are relatively straightforward, it 
can be tedious to work problems using nothing more than a calculator. 
Both Excel and R include functions for many common statistical calcula-
tions. In addition, R provides useful functions for visualizing your data. 

4H.1 Excel

Excel has built-in functions that we can use to complete many of the sta-
tistical calculations covered in this chapter, including reporting descriptive 
statistics, such as means and variances, predicting the probability of obtain-
ing a given outcome from a binomial distribution or a normal distribution, 
and carrying out significance tests. Table 4.19 provides the syntax for many 
of these functions; you can information on functions not included here by 
using Excel’s Help menu.

15 “Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry,” 
Anal. Chem. 1980, 52, 2242–2249.

Smb (SA)LOI(SA)DL 

Figure 4.17 Normal distribution curves for a method blank and for a 
sample at the limit of identification: Smb = 0; vmb = 1; vA = 0.8; and 
(SA)LOI = 0 + 3 × 1 + 3 × 0.8 = 5.4. The inset shows that the prob-
ability of a type 1 error (0.135%) is the same as the probability of a 
type 2 error (0.135%).
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DESCRIPTIVE STATISTICS

Let’s use Excel to provide a statistical summary of the data in Table 4.1. 
Enter the data into a spreadsheet, as shown in Figure 4.18. To calculate 
the sample’s mean, for example, click on any empty cell, enter the formula

=average(b2:b8)

and press Return or Enter to replace the cell’s content with Excel’s calcula-
tion of the mean (3.117 285 714), which we round to 3.117. Excel does 
not have a function for the range, but we can use the functions that report 
the maximum value and the minimum value to calculate the range; thus

=max(b2:b8) – min(b2:b8)

returns 0.142 as an answer.

PROBABILITY DISTRIBUTIONS

In Example 4.11 we showed that 91.10% of a manufacturer’s analgesic 
tablets contained between 243 and 262 mg of aspirin. We arrived at this 
result by calculating the deviation, z, of each limit from the population’s 

A B
1 mass (g)
2 3.080
3 3.094
4 3.107
5 3.056
6 3.112
7 3.174
8 3.198

Figure 4.18 Portion of a spread-
sheet containing data from Ta-
ble 4.1.

Table 4.19 Excel Functions for Statistics Calculations
Parameter Excel Function

Descriptive Statistics
mean =average(data)
median =median(data)
sample standard deviation =stdev.s(data)
population standard deviation =stdev.p(data)
sample variance =var.s(data)
population variance =var.p(data)
maximum value =max(data)
minimum value =min(data)

Probability Distributions
binomial distribution =binom.dist(X, N, p, TRUE or FALSE)
normal distribution =norm.dist(x, n, v, TRUE or FALSE)

Significance Tests
F-test f.test(data set 1, data set 2)

t-test
t.test(data set 1, data set 2, tails =1 or 2, type of t-test: 1 = 
paired; 2 = unpaired with equal variances; or 3 = unpaired 
with unequal variances)
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expected mean, m, of 250 mg in terms of the population’s expected standard 
deviation, v, of 5 mg. After we calculated values for z, we used the table in 
Appendix 3 to find the area under the normal distribution curve between 
these two limits.   

We can complete this calculation in Excel using the norm.dist func-
tion As shown in Figure 4.19, the function calculates the probability of 
obtaining a result less than x from a normal distribution with a mean of n 
and a standard deviation of v. To solve Example 4.11 using Excel enter the 
following formulas into separate cells

=norm.dist(243, 250, 5, TRUE)

=norm.dist(262, 250, 5, TRUE)

obtaining results of 0.080 756 659 and 0.991 802 464. Subtracting the 
smaller value from the larger value and adjusting to the correct number of 
significant figures gives the probability as 0.9910, or 99.10%.

Excel also includes a function for working with binomial distributions. 
The function’s syntax is

=binom.dist(X, N, p, TRUE or FALSE)

where X is the number of times a particular outcome occurs in N trials, and 
p is the probability that X occurs in a single trial. Setting the function’s last 
term to TRUE gives the total probability for any result up to X and setting 
it to FALSE gives the probability for X. Using Example 4.10 to test this 
function, we use the formula

=binom.dist(0, 27, 0.0111, FALSE)

to find the probability of finding no atoms of 13C atoms in a molecule of 
cholesterol, C27H44O, which returns a value of 0.740 after adjusting for 
significant figures. Using the formula

=binom.dist(2, 27, 0.0111, TRUE)

we find that 99.7% of cholesterol molecules contain two or fewer atoms 
of 13C.

SIGNIFICANCE TESTS

As shown in Table 4.19, Excel includes functions for the following signifi-
cance tests covered in this chapter: 

t� BO�F-test of variances
t� BO�VOQBJSFE�t-test of sample means assuming equal variances
t� BO�VOQBJSFE�t-test of sample means assuming unequal variances
t� B�QBJSFE�t-test for of sample means 

Let’s use these functions to complete a t-test on the data in Table 4.11, 
which contains results for two experiments to determine the mass of a 
circulating U. S. penny. Enter the data from Table 4.11 into a spreadsheet 

x

Figure 4.19 Shown in blue is the 
area returned by the function
=norm.dist(x, n, v, TRUE)

The last parameter—TRUE—re-
turns the cumulative distribution 
from –∞ to x; entering FALSE 
gives the probability of obtaining 
the result x. For our purposes, we 
want to use TRUE.
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as shown in Figure 4.20. Because the data in this case are unpaired, we will 
use Excel to complete an unpaired t-test. Before we can complete the t-test, 
we use an F-test to determine whether the variances for the two data sets 
are equal or unequal. 

To complete the F-test, we click on any empty cell, enter the formula

=f.test(b2:b8, c2:c6)

and press Return or Enter, which replaces the cell’s content with the value of 
a for which we can reject the null hypothesis of equal variances. In this case, 
Excel returns an a of 0.566 105 03; because this value is not less than 0.05, 
we retain the null hypothesis that the variances are equal. Excel’s F-test is 
two-tailed; for a one-tailed F-test, we use the same function, but divide the 
result by two; thus

=f.test(b2:b8, c2:c6)/2

Having found no evidence to suggest unequal variances, we next com-
plete an unpaired t-test assuming equal variances, entering into any empty 
cell the formula

=t.test(b2:b8, c2:c6, 2, 2)

where the first 2 indicates that this is a two-tailed t-test, and the second 2 
indicates that this is an unpaired t-test with equal variances. Pressing Return 
or Enter replaces the cell’s content with the value of a for which we can 
reject the null hypothesis of equal means. In this case, Excel returns an a of 
0.211 627 646; because this value is not less than 0.05, we retain the null 
hypothesis that the means are equal.

The other significance tests in Excel work in the same format. The fol-
lowing practice exercise provides you with an opportunity to test yourself.

A B C
1 Set 1 Set 2
2 3.080 3.052
3 3.094 3.141
4 3.107 3.083
5 3.056 3.083
6 3.112 3.048
7 3.174
8 3.198

Figure 4.20 Portion of a spreadsheet con-
taining the data in Table 4.11.

See Example 4.18 and Example 4.19 for 
our earlier solutions to this problem.

Practice Exercise 4.12
Rework Example 4.20 and Example 4.21 using Excel.
Click here to review your answers to this exercise.

4H.2 R

R is a programming environment that provides powerful capabilities for 
analyzing data. There are many functions built into R’s standard installa-
tion and additional packages of functions are available from the R web site 
(www.r-project.org). Commands in R are not available from pull down 
menus. Instead, you interact with R by typing in commands.

DESCRIPTIVE STATISTICS

Let’s use R to provide a statistical summary of the data in Table 4.1. To do 
this we first need to create an object that contains the data, which we do by 
typing in the following command.

You can download the current version of 
R from www.r-project.org. Click on the 
link for Download: CRAN and find a lo-
cal mirror site. Click on the link for the 
mirror site and then use the link for Linux, 
MacOS X, or Windows under the heading 
“Download and Install R.”
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> penny1 = c(3.080, 3.094, 3.107, 3.056, 3.112, 3.174, 3.198)
Table 4.20 lists some of the commands in R for calculating basic descriptive 
statistics. As is the case for Excel, R does not include stand alone commands 
for all descriptive statistics of interest to us, but we can calculate them using 
other commands. Using a command is easy—simply enter the appropriate 
code at the prompt; for example, to find the sample’s variance we enter

> var(penny1)
[1] 0.002221918

PROBABILITY DISTRIBUTIONS

In Example 4.11 we showed that 91.10% of a manufacturer’s analgesic 
tablets contain between 243 and 262 mg of aspirin. We obtained this result 
by calculating the deviation, z, of each limit from the population’s expected 
mean, n, of 250 mg in terms of the population’s expected standard devia-
tion, v, of 5 mg. After we calculated values for z, we used the table in Ap-
pendix 3 to find the area under the normal distribution curve between the 
two limits.   

We can complete this calculation in R using the function pnorm. The 
function’s general format is

pnorm(x, n, v)

where x is the limit of interest, m is the distribution’s expected mean, and v 
is the distribution’s expected standard deviation. The function returns the 
probability of obtaining a result of less than x (Figure 4.21). Here is the 
output of an R session for solving Example 4.11.

> pnorm(243, 250, 5)
[1] 0.08075666
> pnorm(262, 250, 5)
[1] 0.9918025

In R, the symbol ‘>’ is a prompt, which 
indicates that the program is waiting for 
you to enter a command. When you press 
‘Return’ or ‘Enter,’ R executes the com-
mand, displays the result (if there is a re-
sult to return), and returns the > prompt.

Table 4.20 R Functions for Descriptive Statistics
Parameter R Function

mean mean(object)
median median(object)
sample standard deviation sd(object)
population standard deviation sd(object) * ((length(object)–1)/length(object))^0.5
sample variance var(object)
population variance var(object) * ((length(object)–1)/length(object))
range max(object) – min(object)

x

Figure 4.21 Shown in blue is the 
area returned by the function

pnorm(x, n, v)
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Subtracting the smaller value from the larger value and adjusting to the 
correct number of significant figures gives the probability as 0.9910, or 
99.10%.

R also includes functions for binomial distributions. To find the prob-
ability of obtaining a particular outcome, X, in N trials we use the dbinom 
function.

dbinom(X, N, p)

where X is the number of times a particular outcome occurs in N trials, and 
p is the probability that X occurs in a single trial. Using Example 4.10 to 
test this function, we find that the probability of finding no atoms of 13C 
atoms in a molecule of cholesterol, C27H44O is

> dbinom(0, 27, 0.0111)
[1] 0.7397997

0.740 after adjusting the significant figures. To find the probability of ob-
taining any outcome up to a maximum value of X, we use the pbinom 
function.

pbinom(X, N, p)

To find the percentage of cholesterol molecules that contain 0, 1, or 2 atoms 
of 13C, we enter

> pbinom(2, 27, 0.0111)
[1] 0.9967226

 and find that the answer is 99.7% of cholesterol molecules.

SIGNIFICANCE TESTS

R includes commands for the following significance tests covered in this 
chapter: 

t� F-test of variances
t� VOQBJSFE�t-test of sample means assuming equal variances
t� VOQBJSFE�t-test of sample means assuming unequal variances
t� QBJSFE�t-test for of sample means
t� %JYPO�T�Q-test for outliers
t� (SVCC�T�UFTU�GPS�PVUMJFST

Let’s use R to complete a t-test on the data in Table 4.11, which contains 
results for two experiments to determine the mass of a circulating U. S. 
penny. First, enter the data from Table 4.11 into two objects.

> penny1 = c(3.080, 3.094, 3.107, 3.056, 3.112, 3.174, 3.198)
> penny2 = c(3.052, 3.141, 3.083, 3.083, 3.048)

Because the data in this case are unpaired, we will use R to complete an un-
paired t-test. Before we can complete a t-test we use an F-test to determine 
whether the variances for the two data sets are equal or unequal.
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To complete a two-tailed F-test in R we use the command 

var.test(X, Y)

where X and Y are the objects that contain the two data sets. Figure 4.22 
shows the output from an R session to solve this problem. Note that R 
does not provide the critical value for F(0.05, 6, 4); instead it reports the 
95% confidence interval for Fexp. Because this confidence interval of 0.204 
to 11.661 includes the expected value for F of 1.00, we retain the null hy-
pothesis and have no evidence for a difference between the variances. R also 
provides the probability of incorrectly rejecting the null hypothesis, which 
in this case is 0.5561.

Having found no evidence suggesting unequal variances, we now com-
plete an unpaired t-test assuming equal variances. The basic syntax for a 
two-tailed t-test is

t.test(X, Y, mu = 0, paired = FALSE, var.equal = FALSE)

where X and Y are the objects that contain the data sets. You can change 
the underlined terms to alter the nature of the t-test. Replacing “var.equal 
= FALSE” to “var.equal = TRUE” makes this a two-tailed t-test with equal 
variances, and replacing “paired = FALSE” with “paired = TRUE” makes 
this a paired t-test. The term “mu = 0” is the expected difference between 
the means, which for this problem is 0. You can, of course, change this to 
suit your needs. The underlined terms are default values; if you omit them, 
then R assumes you intend an unpaired two-tailed t-test of the null hypoth-
esis that X  = Y with unequal variances. Figure 4.23 shows the output of an 
R session for this problem.

We can interpret the results of this t-test in two ways. First, the p-value 
of 0.2116 means there is a 21.16% probability of incorrectly rejecting the 

R calculates Fexp as (sX)2/(sY)2. If we use 
the command

var.test(penny2, penny1)
the output will give R as 0.534 and the 
95% confidence interval as 0.0858 to 
4.912. Because the expected value for 
Fexp of 1.00 falls within the confidence 
interval, we retain the null hypothesis of 
equal variances.

Figure 4.22 Output of an R session for an F-test of variances. The p-value of 0.5661 is the probability of in-
correctly rejecting the null hypothesis that the variances are equal (note: R identifies a as a p-value). The 95% 
confidence interval is the range of values for Fexp that are explained by random error. If this range includes the 
expected value for F, in this case 1.00, then there is insufficient evidence to reject the null hypothesis. Note that 
R does not adjust for significant figures.

> var.test(penny1, penny2)
 F test to compare two variances
data:  penny1 and penny2 
F = 1.8726, num df = 6, denom df = 4, p-value = 0.5661
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval:
  0.2036028 11.6609726 
sample estimates:
ratio of variances 
          1.872598

For a one-tailed F-test the command is 
one of the following

var.test(X, Y, alternative = “greater”)
var.test(X, Y, alternative = “less”)

where “greater” is used when the alterna-
tive hypothesis is s s>X Y

2 2 , and “less” is 
used when the alternative hypothesis is 
s s>X Y
2 2 .

To complete a one-sided t-test, include the 
command

alternative = “greater”
or

alternative = “less”
A one-sided paired t-test that the differ-
ence between two samples is greater than 
0 becomes
t.test(X, Y, paired = TRUE, alternative = 
“greater”)
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null hypothesis. Second, the 95% confidence interval of -0.024 to 0.0958 
for the difference between the sample means includes the expected value 
of zero. Both ways of looking at the results provide no evidence for reject-
ing the null hypothesis; thus, we retain the null hypothesis and find no 
evidence for a difference between the two samples.

The other significance tests in R work in the same format. The following 
practice exercise provides you with an opportunity to test yourself.

Figure 4.23 Output of an R session for an unpaired t-test with equal variances. The p-value of 0.2116 is the 
probability of incorrectly rejecting the null hypothesis that the means are equal (note: R identifies a as a p-value). 
The 95% confidence interval is the range of values for the difference between the means that is explained by 
random error. If this range includes the expected value for the difference, in this case zero, then there is insuf-
ficient evidence to reject the null hypothesis. Note that R does not adjust for significant figures.

> t.test(penny1, penny2, var.equal=TRUE)
 Two Sample t-test
data:  penny1 and penny2 
t = 1.3345, df = 10, p-value = 0.2116
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.02403040  0.09580182 
sample estimates:
mean of x mean of y 
 3.117286  3.081400

Practice Exercise 4.13
Rework Example 4.20 and Example 4.21 using R.
Click here to review your answers to this exercise.

Unlike Excel, R also includes functions for evaluating outliers. These 
functions are not part of R’s standard installation. To install them enter the 
following command within R (note: you will need an internet connection to 
download the package of functions).

> install.packages(“outliers”)
After you install the package, you must load the functions into R by using 
the following command (note: you need to do this step each time you begin 
a new R session as the package does not automatically load when you start R).

> library(“outliers”)
Let’s use this package to find the outlier in Table 4.16 using both Dix-

on’s Q-test and Grubb’s test. The commands for these tests are

dixon.test(X, type = 10, two.sided = TRUE)

grubbs.test(X, type = 10, two.sided = TRUE)

You need to install a package once, but 
you need to load the package each time 
you plan to use it. There are ways to con-
figure R so that it automatically loads 
certain packages; see An Introduction to R 
for more information (click here to view a 
PDF version of this document). 
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where X is the object that contains the data, “type = 10” specifies that we are 
looking for one outlier, and “two.sided=TRUE” indicates that we are using 
the more conservative two-tailed test. Both tests have other variants that 
allow for the testing of outliers on both ends of the data set (“type = 11”) 
or for more than one outlier (“type = 20”), but we will not consider these  
here. Figure 4.24 shows the output of a session for this problem. For both 
tests the very small p-value indicates that we can treat as an outlier the 
penny with a mass of 2.514 g.

VISUALIZING DATA

One of R’s more useful features is the ability to visualize data. Visualizing 
data is important because it provides us with an intuitive feel for our data 
that can help us in applying and evaluating statistical tests. It is tempting to 
believe that a statistical analysis is foolproof, particularly if the probability 
for incorrectly rejecting the null hypothesis is small. Looking at a visual 
display of our data, however, can help us determine whether our data is 
normally distributed—a requirement for most of the significance tests in 
this chapter—and can help us identify potential outliers. There are many 
useful ways to look at data, four of which we consider here.

To plot data in R, we will use the package “lattice,” which you will need 
to load using the following command.

> library(“lattice”)
To demonstrate the types of plots we can generate, we will use the object 
“penny,” which contains the masses of the 100 pennies in Table 4.13.

Figure 4.24 Output of an R session for Dixon’s Q-test and Grubb’s test for outliers. The p-values for both tests 
show that we can treat as an outlier the penny with a mass of 2.514 g.

> penny3=c(3.067,3.049, 3.039, 2.514, 3.048, 3.079, 3.094, 3.109, 3.102)
> dixon.test(penny3, type=10, two.sided=TRUE)

 Dixon test for outliers

data:  penny3 
Q = 0.8824, p-value < 2.2e-16
alternative hypothesis: lowest value 2.514 is an outlier 

> grubbs.test(penny3, type=10, two.sided=TRUE)

 Grubbs test for one outlier

data:  penny3 
G = 2.6430, U = 0.0177, p-value = 1.938e-06
alternative hypothesis: lowest value 2.514 is an outlier

You do not need to use the command in-
stall.package this time because lattice was 
automatically installed on your computer 
when you downloaded R.

Visualizing data is important, a point we 
will return to in Chapter 5 when we con-
sider the mathematical modeling of data.
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Our first visualization is a histogram. To construct the histogram we 
use mass to divide the pennies into bins and plot the number of pennies or 
the percent of pennies in each bin on the y-axis as a function of mass on the 
x-axis. Figure 4.25a shows the result of entering the command

> histogram(penny, type = “percent”, xlab = “Mass (g)”, 
ylab = “Percent of Pennies”, main = “Histogram of Data in Table 
4.13”)

A histogram allows us to visualize the data’s distribution. In this ex-
ample the data appear to follow a normal distribution, although the larg-
est bin does not include the mean of 3.095 g and the distribution is not 
perfectly symmetric. One limitation of a histogram is that its appearance 

To create a histogram showing the num-
ber of pennies in each bin, change “per-
cent” to “count.”

Figure 4.25 Four ways to plot the data in Table 4.13: (a) histogram; (b) kernel density plot showing 
smoothed distribution and individual data points; (c) dot chart; and (d) box plot.
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depends on how we choose to bin the data. Increasing the number of bins 
and centering the bins around the data’s mean gives a histogram that more 
closely approximates a normal distribution (Figure 4.10).

An alternative to the histogram is a kernel density plot, which ba-
sically is a smoothed histogram. In this plot each value in the data set is 
replaced with a normal distribution curve whose width is a function of the 
data set’s standard deviation and size. The resulting curve is a summation 
of the individual distributions. Figure 4.25b shows the result of entering 
the command

> densityplot(penny, xlab = “Mass of Pennies (g)”, main = “Kernel 
Density Plot of Data in Table 4.13”) 

The circles at the bottom of the plot show the mass of each penny in the 
data set. This display provides a more convincing picture that the data in 
Table 4.13 are normally distributed, although we see evidence of a small 
clustering of pennies with a mass of approximately 3.06 g.

We analyze samples to characterize the parent population. To reach a 
meaningful conclusion about a population, the samples must be represen-
tative of the population. One important requirement is that the samples 
are random. A dot chart provides a simple visual display that allows us 
to examine the data for non-random trends. Figure 4.25c shows the result 
of entering

> dotchart(penny, xlab = “Mass of Pennies (g)”, ylab = “Penny 
Number”, main = “Dotchart of Data in Table 4.13”)

In this plot the masses of the 100 pennies are arranged along the y-axis in 
the order in which they were sampled. If we see a pattern in the data along 
the y-axis, such as a trend toward smaller masses as we move from the first 
penny to the last penny, then we have clear evidence of non-random sam-
pling. Because our data do not show a pattern, we have more confidence 
in the quality of our data.

The last plot we will consider is a box plot, which is a useful way to 
identify potential outliers without making any assumptions about the data’s 
distribution. A box plot contains four pieces of information about a data 
set: the median, the middle 50% of the data, the smallest value and the 
largest value within a set distance of the middle 50% of the data, and pos-
sible outliers. Figure 4.25d shows the result of entering

> bwplot(penny, xlab = “Mass of Pennies (g)”, main = “Boxplot of 
Data in Table 4.13)”

The black dot (•) is the data set’s median. The  rectangular box shows 
the range of masses spanning the middle 50% of the pennies. This also 
is known as the interquartile range, or IQR. The dashed lines, which are 
called “whiskers,” extend to the smallest value and the largest value that 
are within ±1.5×IQR of the rectangular box. Potential outliers are shown 
as open circles (º). For normally distributed data the median is near the 

Note that the dispersion of points along 
the x-axis is not uniform, with more 
points occurring near the center of the x-
axis than at either end. This pattern is as 
expected for a normal distribution.
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center of the box and the whiskers will be equidistant from the box. As is 
often the case in statistics, the converse is not true—finding that a boxplot 
is perfectly symmetric does not prove that the data are normally distributed. 

The box plot in Figure 4.25d is consistent with the histogram (Figure 
4.25a) and the kernel density plot  (Figure 4.28b). Together, the three plots  
provide evidence that the data in Table 4.13 are normally distributed. The 
potential outlier, whose mass of 3.198 g, is not sufficiently far away from 
the upper whisker to be of concern, particularly as the size of the data set 
(n = 100) is so large. A Grubb’s test on the potential outlier does not pro-
vide evidence for treating it as an outlier.

To find the interquartile range you first 
find the median, which divides the data 
in half. The median of each half provides 
the limits for the box. The IQR is the me-
dian of the upper half of the data minus 
the median for the lower half of the data. 
For the data in Table 4.13 the median is 
3.098. The median for the lower half of 
the data is 3.068 and the median for the 
upper half of the data is 3.115. The IQR 
is 3.115 – 3.068 = 0.047. You can use the 
command “summary(penny)” in R to ob-
tain these values. 
The  lower “whisker” extend to the first 
data point with a mass larger than 
3.068 – 1.5 × IQR = 3.068 – 1.5 × 0.047 

= 2.9975
which for this data is 2.998 g. The upper 
“whisker” extends to the last data point 
with a mass smaller than 
3.115+1.5×IQR = 3.115 + 1.5×0.047 = 

3.1855
which for this data is 3.181 g.

Practice Exercise 4.14
Use R to create a data set consisting of 100 values from a uniform distri-
bution by entering the command

> data = runif(100, min = 0, max = 100)
A uniform distribution is one in which every value between the mini-
mum and the maximum is equally probable. Examine the data set by 
creating a histogram, a kernel density plot, a dot chart, and a box plot. 
Briefly comment on what the plots tell you about the your sample and 
its parent population.
Click here to review your answer to this exercise.

4I Key Terms
alternative hypothesis bias binomial distribution
box plot central limit theorem Chauvenet’s criterion
confidence interval constant determinate error degrees of freedom
detection limit determinate error Dixon’s Q-test
dot chart error F-test
Grubb’s test histogram indeterminate error
kernel density plot limit of identification limit of quantitation
mean median measurement error
method error normal distribution null hypothesis
one-tailed significance test outlier paired data
paired t-test personal error population
probability distribution propagation of uncertainty proportional determinate error
range repeatability reproducibility
sample sampling error significance test
standard deviation standard error of the mean Standard Reference Material
tolerance t-test two-tailed significance test
type 1 error type 2 error uncertainty

unpaired data variance
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4J Chapter Summary
The data we collect are characterized by their central tendency (where the 
values cluster), and their spread (the variation of individual values around 
the central value). We report our data’s central tendency by stating the mean 
or median, and our data’s spread using the range, standard deviation or 
variance. Our collection of data is subject to errors, including determinate 
errors that affect the data’s accuracy and indeterminate errors that affect its 
precision. A propagation of uncertainty allows us to estimate how these 
determinate and indeterminate errors affect our results.

When we analyze a sample several times the distribution of the results 
is described by a probability distribution, two examples of which are the 
binomial distribution and the normal distribution. Knowing the type of 
distribution allows us to determine the probability of obtaining a particular 
range of results. For a normal distribution we express this range as a con-
fidence interval.

A statistical analysis allows us to determine whether our results are sig-
nificantly different from known values, or from values obtained by other 
analysts, by other methods of analysis, or for other samples. We can use a 
t-test to compare mean values and an F-test to compare variances. To com-
pare two sets of data you first must determine whether the data is paired 
or unpaired. For unpaired data you also must decide if you can pool the 
standard deviations. A decision about whether to retain an outlying value 
can be made using Dixon’s Q-test, Grubb’s test, or Chauvenet’s criterion. 
You should be sure to exercise caution if you decide to reject an outlier.

Finally, the detection limit is a statistical statement about the smallest 
amount of analyte we can detect with confidence. A detection limit is not 
exact since its value depends on how willing we are to falsely report the 
analyte’s presence or absence in a sample. When reporting a detection limit 
you should clearly indicate how you arrived at its value.

4K Problems

1. The following masses were recorded for 12 different U.S. quarters (all 
given in grams):

5.683 5.549 5.548 5.552
5.620 5.536 5.539 5.684
5.551 5.552 5.554 5.632

 Report the mean, median, range, standard deviation and variance for 
this data.

2. A determination of acetaminophen in 10 separate tablets of Excedrin 
Extra Strength Pain Reliever gives the following results (in mg).16

16 Simonian, M. H.; Dinh, S.; Fray, L. A. Spectroscopy 1993, 8(6), 37–47.

Many of the problems that follow require ac-
cess to statistical tables. For your convenience, 
here are hyperlinks to the appendices containing 
these tables. 
Appendix 3: Single-Sided Normal Distribution
Appendix 4: Critical Values for the t-Test
Appendix 5: Critical Values for the F-Test
Appendix 6: Critical Values for Dixon’s Q-Test
Appendix 7: Critical Values for Grubb’s Test
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224.3 240.4 246.3 239.4 253.1
261.7 229.4 255.5 235.5 249.7

 (a) Report the mean, median, range, standard deviation and variance 
for this data. (b) Assuming that X  and s2 are good approximations for 
n and for v2, and that the population is normally distributed, what per-
centage of tablets contain more than the standard amount of 250 mg 
acetaminophen per tablet?

3. Salem and Galan developed a new method to determine the amount of 
morphine hydrochloride in tablets.17 An analysis of tablets with differ-
ent nominal dosages gave the following results (in mg/tablet).

100-mg tablets 60-mg tablets 30-mg tablets 10-mg tablets
99.17 54.21 28.51 9.06
94.31 55.62 26.25 8.83
95.92 57.40 25.92 9.08
94.55 57.51 28.62
93.83 52.59 24.93

 (a) For each dosage, calculate the mean and the standard deviation for 
the mg of morphine hydrochloride per tablet. (b) For each dosage level, 
and assuming that X  and s2 are good approximations for n and for 
v2, and that the population is normally distributed, what percentage 
of tablets contain more than the nominal amount of morphine hydro-
chloride per tablet?

4. Daskalakis and co-workers evaluated several procedures for digesting 
oyster and mussel tissue prior to analyzing them for silver.18 To evalu-
ate the procedures they spiked samples with known amounts of silver 
and analyzed the samples to determine the amount of silver, reporting 
results as the percentage of added silver found in the analysis. A proce-
dure was judged acceptable if its spike recoveries fell within the range 
100±15%. The spike recoveries for one method are shown here.

106% 108% 92% 99%
101% 93% 93% 104%

 Assuming a normal distribution for the spike recoveries, what is the 
probability that any single spike recovery is within the accepted range?

5. The formula weight (FW) of a gas can be determined using the follow-
ing form of the ideal gas law

17 Salem, I. I.; Galan, A. C. Anal. Chim. Acta 1993, 283, 334–337.
18 Daskalakis, K. D.; O’Connor, T. P.; Crecelius, E. A. Environ. Sci. Technol. 1997, 31, 2303–

2306.

See Chapter 15 to learn more about using 
a spike recovery to evaluate an analytical 
method.

Many of the problems that follow require ac-
cess to statistical tables. For your convenience, 
here are hyperlinks to the appendices containing 
these tables. 
Appendix 3: Single-Sided Normal Distribution
Appendix 4: Critical Values for the t-Test
Appendix 5: Critical Values for the F-Test
Appendix 6: Critical Values for Dixon’s Q-Test
Appendix 7: Critical Values for Grubb’s Test

Many of the problems that follow require ac-
cess to statistical tables. For your convenience, 
here are hyperlinks to the appendices containing 
these tables. 
Appendix 3: Single-Sided Normal Distribution
Appendix 4: Critical Values for the t-Test
Appendix 5: Critical Values for the F-Test
Appendix 6: Critical Values for Dixon’s Q-Test
Appendix 7: Critical Values for Grubb’s Test
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FW PV
g TR

=

 where g is the mass in grams, R is the gas constant, T is the temperature 
in Kelvin, P is the pressure in atmospheres, and V is the volume in liters. 
In a typical analysis the following data are obtained (with estimated 
uncertainties in parentheses)

g = 0.118 g (± 0.002 g)
R = 0.082056 L atm mol–1 K–1 (± 0.000001 L atm mol–1 K–1)
T = 298.2 K (± 0.1 K)
P = 0.724 atm (± 0.005 atm)
V = 0.250 L (± 0.005 L)

 (a) What is the compound’s formula weight and its estimated uncer-
tainty? (b) To which variable(s) should you direct your attention if you 
wish to improve the uncertainty in the compound’s molecular weight?

6. To prepare a standard solution of Mn2+, a 0.250 g sample of Mn is 
dissolved in 10 mL of concentrated HNO3 (measured with a gradu-
ated cylinder). The resulting solution is quantitatively transferred to 
a 100-mL volumetric flask and diluted to volume with distilled water. 
A 10-mL aliquot of the solution is pipeted into a 500-mL volumetric 
flask and diluted to volume. (a) Express the concentration of Mn in 
mg/L, and estimate its uncertainty using a propagation of uncertainty. 
(b) Can you improve the concentration’s uncertainty by using a pipet 
to measure the HNO3, instead of a graduated cylinder?

7. The mass of a hygroscopic compound is measured using the technique 
of weighing by difference. In this technique the compound is placed in 
a sealed container and weighed. A portion of the compound is removed 
and the container and the remaining material are reweighed. The dif-
ference between the two masses gives the sample’s mass. A solution of 
a hygroscopic compound with a gram formula weight of 121.34 g/mol 
(±0.01 g/mol) is prepared in the following manner. A sample of the 
compound and its container has a mass of 23.5811 g. A portion of the 
compound is transferred to a 100-mL volumetric flask and diluted to 
volume. The mass of the compound and container after the transfer is 
22.1559 g. Calculate the compound’s molarity and estimate its uncer-
tainty by a propagation of uncertainty.

8. Use a propagation of uncertainty to show that the standard error of the 
mean for n determinations is / nv .

9. Beginning with equation 4.17 and equation 4.18, use a propagation of 
uncertainty to derive equation 4.19.
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10. What is the smallest mass you can measure on an analytical balance that 
has a tolerance of ±0.1 mg, if the relative error must be less than 0.1%?

11. Which of the following is the best way to dispense 100.0 mL if we wish 
to minimize the uncertainty: (a) use a 50-mL pipet twice; (b) use a 25-
mL pipet four times; or (c) use a 10-mL pipet ten times?

12. You can dilute a solution by a factor of 200 using readily available pipets 
(1-mL to 100-mL) and volumetric flasks (10-mL to 1000-mL) in either 
one step, two steps, or three steps. Limiting yourself to the glassware 
in Table 4.2, determine the proper combination of glassware to ac-
complish each dilution, and rank them in order of their most probable 
uncertainties.

13. Explain why changing all values in a data set by a constant amount will 
change X  but has no effect on the standard deviation, s.

14. Obtain a sample of a metal, or other material, from your instructor and 
determine its density by one or both of the following methods:

 Method A: Determine the sample’s mass with a balance. Calculate the 
sample’s volume using appropriate linear dimensions.

 Method B: Determine the sample’s mass with a balance. Calculate 
the sample’s volume by measuring the amount of water it displaces by 
adding water to a graduated cylinder, reading the volume, adding the 
sample, and reading the new volume. The difference in volumes is equal 
to the sample’s volume.

 Determine the density at least five times. (a) Report the mean, the 
standard deviation, and the 95% confidence interval for your results. 
(b) Find the accepted value for the metal’s density and determine the 
absolute and relative error for your determination of the metal’s density. 
(c) Use a propagation of uncertainty to determine the uncertainty for 
your method of analysis. Is the result of this calculation consistent with 
your experimental results? If not, suggest some possible reasons for this 
disagreement.

15. How many carbon atoms must a molecule have if the mean number 
of 13C atoms per molecule is at least one? What percentage of such 
molecules will have no atoms of 13C?

16. In Example 4.10 we determined the probability that a molecule of 
cholesterol, C27H44O, had no atoms of 13C. (a) Calculate the prob-
ability that a molecule of cholesterol, has 1 atom of 13C. (b) What is 
the probability that a molecule of cholesterol has two or more atoms of 
13C?
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17. Berglund and Wichardt investigated the quantitative determination 
of Cr in high-alloy steels using a potentiometric titration of Cr(VI)19. 
Before the titration, samples of the steel were dissolved in acid and the 
chromium oxidized to Cr(VI) using peroxydisulfate. Shown here are 
the results ( as %w/w Cr) for the analysis of a reference steel.

16.968 16.922 16.840 16.883
16.887 16.977 16.857 16.728

 Calculate the mean, the standard deviation, and the 95% confidence 
interval about the mean. What does this confidence interval mean?

18. Ketkar and co-workers developed an analytical method to determine 
trace levels of atmospheric gases.20 An analysis of a sample that is 40.0 
parts per thousand (ppt) 2-chloroethylsulfide gave the following results

43.3 34.8 31.9
37.8 34.4 31.9
42.1 33.6 35.3

 (a) Determine whether there is a significant difference between the 
experimental mean and the expected value at a = 0.05. (b) As part of 
this study, a reagent blank was analyzed 12 times giving a mean of 0.16 
ppt and a standard deviation of 1.20 ppt. What are the IUPAC detec-
tion limit, the limit of identification, and limit of quantitation for this 
method assuming a = 0.05?

19. To test a spectrophotometer’s accuracy a solution of 60.06 ppm 
K2Cr2O7 in 5.0 mM H2SO4 is prepared and analyzed. This solution 
has an expected absorbance of 0.640 at 350.0 nm in a 1.0-cm cell when 
using 5.0 mM H2SO4 as a reagent blank. Several aliquots of the solu-
tion produce the following absorbance values.

0.639  0.638 0.640 0.639 0.640 0.639 0.638
  Determine whether there is a significant difference between the experi-

mental mean and the expected value at a = 0.01.

20. Monna and co-workers used radioactive isotopes to date sediments 
from lakes and estuaries.21 To verify this method they analyzed a 208Po 
standard known to have an activity of 77.5 decays/min, obtaining the 
following results.

77.09 75.37 72.42 76.84 77.84 76.69
78.03 74.96 77.54 76.09 81.12 75.75

19 Berglund, B.; Wichardt, C. Anal. Chim. Acta 1990, 236, 399–410.
20 Ketkar, S. N.; Dulak, J. G.; Dheandhanou, S.; Fite, W. L. Anal. Chim. Acta 1991, 245, 267–270.
21 Monna, F.; Mathieu, D.; Marques, A. N.; Lancelot, J.; Bernat, M. Anal. Chim. Acta 1996, 330, 

107–116.
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 Determine whether there is a significant difference between the mean 
and the expected value at a = 0.05.

21. A 2.6540-g sample of an iron ore, which is 53.51% w/w Fe, is dissolved 
in a small portion of concentrated HCl and diluted to volume in a 
250-mL volumetric flask. A spectrophotometric determination of the 
concentration of Fe in this solution yields results of 5840, 5770, 5650, 
and 5660 ppm. Determine whether there is a significant difference 
between the experimental mean and the expected value at a = 0.05.

22. Horvat and co-workers used atomic absorption spectroscopy to deter-
mine the concentration of Hg in coal fly ash.22 Of particular interest 
to the authors was developing an appropriate procedure for digesting 
samples and releasing the Hg for analysis. As part of their study they 
tested several reagents for digesting samples. Their results using HNO3 
and using a 1 + 3 mixture of HNO3 and HCl are shown here. All con-
centrations are given as ppb Hg sample.

HNO3: 161 165 160 167 166
1+3 HNO3–HCl: 159 145 140 147 143 156

 Determine whether there is a significant difference between these meth-
ods at a = 0.05.

23. Lord Rayleigh, John William Strutt (1842-1919), was one of the most 
well known scientists of the late nineteenth and early twentieth centu-
ries, publishing over 440 papers and receiving the Nobel Prize in 1904 
for the discovery of argon. An important turning point in Rayleigh’s 
discovery of Ar was his experimental measurements of the density of 
N2. Rayleigh approached this experiment in two ways: first by taking 
atmospheric air and removing O2 and H2; and second, by chemically 
producing N2 by decomposing nitrogen containing compounds (NO, 
N2O, and NH4NO3) and again removing O2 and H2. The following 
table shows his results for the density of N2, as published in Proc. Roy. 
Soc. 1894, LV, 340 (publication 210); all values are the grams of gas at 
an equivalent volume, pressure, and temperature.23

Atmospheric 
Origin:

2.310 17 2.309 86 2.310 10 2.310 01
2.310 24 2.310 10 2.310 28

Chemical 
Origin:

2.301 43 2.298 90 2.298 16 2.301 82
2.298 69 2.299 40 2.298 49 2.298 89

 Explain why this data led Rayleigh to look for and to discover Ar.

22 Horvat, M.; Lupsina, V.; Pihlar, B. Anal. Chim. Acta 1991, 243, 71–79.
23 Larsen, R. D. J. Chem. Educ. 1990, 67, 925–928.
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24. Gács and Ferraroli reported a method for monitoring the concentration 
of SO2 in air.24 They compared their method to the standard method by 
analyzing urban air samples collected from a single location. Samples 
were collected by drawing air through a collection solution for 6 min. 
Shown here is a summary of their results with SO2 concentrations re-
ported in µL/m3.

standard 
method:

21.62 22.20 24.27 23.54
24.25 23.09 21.02

new 
method:

21.54 20.51 22.31 21.30
24.62 25.72 21.54

 Using an appropriate statistical test, determine whether there is any sig-
nificant difference between the standard method and the new method 
at a = 0.05.

25. One way to check the accuracy of a spectrophotometer is to measure 
absorbances for a series of standard dichromate solutions obtained from 
the National Institute of Standards and Technology. Absorbances are 
measured at 257 nm and compared to the accepted values. The results 
obtained when testing a newly purchased spectrophotometer are shown 
here. Determine if the tested spectrophotometer is accurate at a = 0.05. 

Standard Measured Absorbance Expected Absorbance
1 0.2872 0.2871
2 0.5773 0.5760
3 0.8674 0.8677
4 1.1623 1.1608
5 1.4559 1.4565

26. Maskarinec and co-workers investigated the stability of volatile or-
ganics in environmental water samples.25 Of particular interest was 
establishing the proper conditions to maintain the sample’s integrity 
between its collection and its analysis. Two preservatives were investi-
gated—ascorbic acid and sodium bisulfate—and maximum holding 
times were determined for a number of volatile organics and water ma-
trices. The following table shows results for the holding time (in days) 
of nine organic compounds in surface water.

Ascorbic Acid Sodium Bisulfate
methylene chloride 77 62
carbon disulfide 23 54
trichloroethane 52 51

24 Gács, I.; Ferraroli, R. Anal. Chim. Acta 1992, 269, 177 –185.
25 Maxkarinec, M. P.; Johnson, L. H.; Holladay, S. K.; Moody, R. L.; Bayne, C. K.; Jenkins, R. A. 

Environ. Sci. Technol. 1990, 24, 1665–1670.
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Ascorbic Acid Sodium Bisulfate
benzene 62 42
1,1,2-trichloroethane 57 53
1,1,2,2-tetrachlorethane 33 85
tetrachloroethene 41 63
toluene 32 94
chlorobenzene 36 86

 Determine whether there is a significant difference in the effectiveness 
of the two preservatives at a = 0.10.

27. Using X-ray diffraction, Karstang and Kvalhein reported a new method 
to determine the weight percent of kaolinite in complex clay minerals 
using X-ray diffraction.26 To test the method, nine samples containing 
known amounts of kaolinite were prepared and analyzed. The results 
(as % w/w kaolinite) are shown here.

Actual: 5.0 10.0 20.0 40.0 50.0 60.0 80.0 90.0 95.0
Found: 6.8 11.7 19.8 40.5 53.6 61.7 78.9 91.7 94.7

 Evaluate the accuracy of the method at a = 0.05.

28. Mizutani, Yabuki and Asai developed an electrochemical method for 
analyzing l-malate.27 As part of their study they analyzed a series of 
beverages using both their method and a standard spectrophotometric 
procedure based on a clinical kit purchased from Boerhinger Scientific. 
The following table summarizes their results. All values are in ppm.

Sample Electrode Spectrophotometric
Apple juice 1 34.0 33.4
Apple juice 2 22.6 28.4
Apple juice 3 29.7 29.5
Apple juice 4 24.9 24.8
Grape juice 1 17.8 18.3
Grape juice 2 14.8 15.4
Mixed fruit juice 1 8.6 8.5
Mixed fruit juice 2 31.4 31.9
White wine 1 10.8 11.5
White wine 2 17.3 17.6
White wine 3 15.7 15.4
White wine 4 18.4 18.3

 Determine whether there is a significant difference between the meth-
ods at a = 0.05.

26 Karstang, T. V.; Kvalhein, O. M. Anal. Chem. 1991, 63, 767–772.
27 Mizutani, F.; Yabuki, S.; Asai, M. Anal. Chim. Acta 1991, 245,145–150.
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29. Alexiev and colleagues describe an improved photometric method for 
determining Fe3+ based on its ability to catalyze the oxidation of sul-
phanilic acid by KIO4.28 As part of their study, the concentration of 
Fe3+ in human serum samples was determined by the improved method 
and the standard method. The results, with concentrations in mmol/L, 
are shown in the following table.

Sample Improved Method Standard Method
1 8.25 8.06
2 9.75 8.84
3 9.75 8.36
4 9.75 8.73
5 10.75 13.13
6 11.25 13.65
7 13.88 13.85
8 14.25 13.53

 Determine whether there is a significant difference between the two 
methods at a = 0.05.

30. Ten laboratories were asked to determine an analyte’s concentration of 
in three standard test samples. Following are the results, in µg/mL.29

Laboratory Sample 1 Sample 2 Sample 3
1 22.6 13.6 16.0
2 23.0 14.2 15.9
3 21.5 13.9 16.9
4 21.9 13.9 16.9
5 21.3 13.5 16.7
6 22.1 13.5 17.4
7 23.1 13.9 17.5
8 21.7 13.5 16.8
9 22.2 12.9 17.2

10 21.7 13.8 16.7
 Determine if there are any potential outliers in Sample 1, Sample 2 or 

Sample 3. Use all three methods—Dixon’s Q-test, Grubb’s test, and 
Chauvenet’s criterion—and compare the results to each other. For Dix-
on’s Q-test and for the Grubb’s test, use a significance level of a = 0.05.

28 Alexiev, A.; Rubino, S.; Deyanova, M.; Stoyanova, A.; Sicilia, D.; Perez Bendito, D. Anal. Chim. 
Acta, 1994, 295, 211–219.

29 Data adapted from Steiner, E. H. “Planning and Analysis of Results of Collaborative Tests,” in 
Statistical Manual of the Association of Official Analytical Chemists, Association of Official Analyti-
cal Chemists: Washington, D. C., 1975.
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31. When copper metal and powdered sulfur are placed in a crucible and 
ignited, the product is a sulfide with an empirical formula of CuxS. The 
value of x is determined by weighing the Cu and the S before ignition 
and finding the mass of CuxS when the reaction is complete (any excess 
sulfur leaves as SO2). The following table shows the Cu/S ratios from 
62 such experiments.

1.764 1.838 1.865 1.866 1.872 1.877
1.890 1.891 1.891 1.897 1.899 1.900
1.906 1.908 1.910 1.911 1.916 1.919
1.920 1.922 1.927 1.931 1.935 1.936
1.936 1.937 1.939 1.939 1.940 1.941
1.941 1.942 1.943 1.948 1.953 1.955
1.957 1.957 1.957 1.959 1.962 1.963
1.963 1.963 1.966 1.968 1.969 1.973
1.975 1.976 1.977 1.981 1.981 1.988
1.993 1.993 1.995 1.995 1.995 2.017
2.029 2.042

 (a) Calculate the mean, the median, and the standard deviation for 
this data. (b) Construct a histogram for this data. From a visual 
inspection of your histogram, do the data appear normally dis-
tributed? (c) In a normally distributed population 68.26% of all 
members lie within the range n ± 1v. What percentage of the data 
lies within the range X s1! ? Does this support your answer to the 
previous question? (d) Assuming that X  and s2 are good approxi-
mations for n and for v2, what percentage of all experimentally 
determined Cu/S ratios should be greater than 2? How does this 
compare with the experimental data? Does this support your con-
clusion about whether the data is normally distributed? (e) It has 
been reported that this method of preparing copper sulfide results 
in a non-stoichiometric compound with a Cu/S ratio of less than 2. 
Determine if the mean value for this data is significantly less than 
2 at a significance level of a = 0.01.

32. Real-time quantitative PCR is an analytical method for determining 
trace amounts of DNA. During the analysis, each cycle doubles the 
amount of DNA. A probe species that fluoresces in the presence of 
DNA is added to the reaction mixture and the increase in fluorescence 
is monitored during the cycling. The cycle threshold, Ct, is the cycle 
when the fluorescence exceeds a threshold value. The data in the follow-
ing table shows Ct values for three samples using real-time quantitative 
PCR.30 Each sample was analyzed 18 times.

30 Burns, M. J.; Nixon, G. J.; Foy, C. A.; Harris, N. BMC Biotechnol. 2005, 5:31 (open access 
publication).
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tors affecting the formation of non-stoichiomet-
ric copper sulfide. 
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Sample X Sample Y Sample Z
24.24 25.14 24.41 28.06 22.97 23.43
23.97 24.57 27.21 27.77 22.93 23.66
24.44 24.49 27.02 28.74 22.95 28.79
24.79 24.68 26.81 28.35 23.12 23.77
23.92 24.45 26.64 28.80 23.59 23.98
24.53 24.48 27.63 27.99 23.37 23.56
24.95 24.30 28.42 28.21 24.17 22.80
24.76 24.60 25.16 28.00 23.48 23.29
25.18 24.57 28.53 28.21 23.80 23.86

 Examine this data and write a brief report on your conclusions. Issues 
you may wish to address include the presence of outliers in the samples, 
a summary of the descriptive statistics for each sample, and any evi-
dence for a difference between the samples.

4L Solutions to Practice Exercises
Practice Exercise 4.1
Mean: To find the mean we sum the individual measurements and divide 
by the number of measurements. The sum of the 10 concentrations is 
1405. Dividing the sum by 10, gives the mean as 140.5, or 1.40×102 

mmol/L.
Median: To find the mean we arrange the 10 measurements from the 
smallest concentration to the largest concentration; thus

118  132  137  140  141  143  143  145  149  157

The median for a data set with 10 members is the average of the fifth and 
sixth values; thus, the median is (141 + 143)/2, or 142 mmol/L.
Range: The range is the difference between the largest value and the small-
est value; thus, the range is 157 – 118 = 39 mmol/L.
Standard Deviation: To calculate the standard deviation we first calculate 
the difference between each measurement and the mean value (140.5), 
square the resulting differences, and add them together. The differences 
are

–0.5 2.5 0.5 –3.5 –8.5 16.5 2.5 8.5 –22.5 4.5

and the squared differences are

0.25 6.25 0.25 12.25 72.25 272.25 6.25 72.25 506.25 20.25

The total sum of squares, which is the numerator of equation 4.1, is 
968.50. The standard deviation is
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. . .s 10 1
968 50 10 37 10 4.= - =

Variance: The variance is the square of the standard deviation, or 108.

Click here to return to the chapter.

Practice Exercise 4.2
The first step is to determine the concentration of Cu2+ in the final solu-
tion. The mass of copper is

74.2991 g – 73.3216 g = 0.9775 g Cu

The 10 mL of HNO3 used to dissolve the copper does not factor into our 
calculation. The concentration of Cu2+ is

.
.

.
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7 820L
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mg Cu /L2# # = +

Having found the concentration of Cu2+, we continue with the propaga-
tion of uncertainty. The absolute uncertainty in the mass of Cu wire is

( . ) ( . ) .u 0 0001 0 0001 0 00014 g2 2
g Cu= + =

The relative uncertainty in the concentration of Cu2+ is
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Solving for umg/L gives the uncertainty as 0.0472. The concentration and 
uncertainty for Cu2+ is 7.820 mg/L ± 0.047 mg/L.

Click here to return to the chapter.

Practice Exercise 4.3
The first step is to calculate the absorbance, which is

.

. . .log logA P
P

3 80 10
1 50 10 0 4037 0 404

o
2

2

#
# c=- =- =

Having found the absorbance, we continue with the propagation of un-
certainty. First, we find the uncertainty for the ratio P/Po.

/ . . .P P
u

3 80 10
15

1 50 10
15 0 1075/

o

P P
2

2

2

2
0

# #
= + =a ak k

Finally, from Table 4.10 the uncertainty in the absorbance is

. / ( . ) ( ) ..u P P
u0 4343 0 4343 4 669 100 1075/

A
o

P P 2o# # #= = = -

The absorbance and uncertainty is 0.404 ± 0.005 absorbance units.

Click here to return to the chapter.
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Practice Exercise 4.4
An uncertainty of 0.8% is a relative uncertainty in the concentration of 
0.008; thus

. .
.

.
u0 008 23 41

0 028
0 186

k
2 2

A= +a `k j
Squaring both sides of the equation gives

. .
.

.
u6 4 10 23 41

0 028
0 186

k5
2 2

A# = +- a `k j
Solving for ukA gives its value as 1.47×10–3 or ±0.0015 ppm–1.

Click here to return to the chapter.

Practice Exercise 4.5
To find the percentage of tablets that contain less than 245 mg of aspirin 
we first calculate the deviation, z,

.z 5
245 250 1 00= - =-

and then look up the corresponding probability in Appendix 3A, obtain-
ing a value of 15.87%. To find the percentage of tablets that contain less 
than 240 mg of aspirin we find that

.z 5
240 250 2 00= - =-

which corresponds to 2.28%. The percentage of tablets containing be-
tween 240 and 245 mg of aspiring is 15.87% – 2.28% = 13.59%.

Click here to return to the chapter.

Practice Exercise 4.6
The mean is 249.9 mg aspirin/tablet for this sample of seven tablets. For 
a 95% confidence interval the value of z is 1.96, which makes the confi-
dence interval

. . . .249 9
7

1 96 5 249 9 3 7 250 4mg mg! # ! !.=

Click here to return to the chapter.

Practice Exercise 4.7
With 100 pennies, we have 99 degrees of freedom for the mean. Although 
Table 4.15 does not include a value for t(0.05, 99), we can approximate its 
value by using the values for t(0.05, 60) and t(0.05, 100) and by assuming 
a linear change in its value.

( . , ) ( . , ) ( . , ) ( . , )t t t t0 05 99 0 05 60 40
39 0 05 60 0 05 100= - -" ,

( . , ) . . . .t 0 05 99 2 000 40
39 2 000 1 984 1 9844= - - =" ,
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The 95% confidence interval for the pennies is

. . . . .3 095
100

1 9844 0 0346 3 095 0 007g g! # !=

From Example 4.15, the 95% confidence intervals for the two samples in 
Table 4.11 are 3.117 g ± 0.047 g and 3.081 g ± 0.046 g. As expected, the 
confidence interval for the sample of 100 pennies is much smaller than 
that for the two smaller samples of pennies. Note, as well, that the con-
fidence interval for the larger sample fits within the confidence intervals 
for the two smaller samples.

Click here to return to the chapter.

Practice Exercise 4.8
The null hypothesis is :H X0 n=  and the alternative hypothesis is 

:H XA ! n . The mean and the standard deviation for the data are 99.26% 
and 2.35%, respectively. The value for texp is

.
. . .t 2 35

100 0 99 26 7 0 833exp=
-

=

and the critical value for t(0.05, 6) is 0.836. Because texp is less than 
t(0.05, 6) we retain the null hypothesis and have no evidence for a signifi-
cant difference between X  and n.

Click here to return to the chapter.

Practice Exercise 4.9
The standard deviations are 6.451 mg for Lot 1 and 7.849 mg for Lot 2. 
The null and alternative hypotheses are

   : :H s s H s s0
2 2 2 2
Lot 1 Lot 2 A Lot 1 Lot 2!=     

and the value of Fexp is

( . )
( . ) .F 6 451
7 849 1 480exp 2

2

= =

The critical value for F(0.05, 5, 6) is 5.988. Because Fexp < F(0.05, 5, 6), 
we retain the null hypothesis. There is no evidence at a = 0.05 to suggest 
that the difference in the variances is significant.

Click here to return to the chapter.

Practice Exercise 4.10
To compare the means for the two lots, we use an unpaired t-test of 
the null hypothesis :H X X0 1 2Lot Lot=  and the alternative hypothesis 

:H X X1 2A Lot Lot! . Because there is no evidence to suggest a difference in 
the variances (see Practice Exercise 4.9) we pool the standard deviations, 
obtaining an spool  of
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( ) ( . ) ( ) ( . ) .s 7 6 2
7 1 6 451 6 1 7 849 7 121

2 2

pool= + -
- + -

=

The means for the two samples are 249.57 mg for Lot 1 and 249.00 mg 
for Lot 2. The value for texp is

.
. . .t 7 121

249 57 249 00
7 6
7 6 0 1439exp # #=

-
+ =

The critical value for t(0.05, 11) is 2.204. Because texp is less than t(0.05, 
11), we retain the null hypothesis and find no evidence at a = 0.05 that 
there is a significant difference between the means for the two lots of 
aspirin tablets.

Click here to return to the chapter.

Practice Exercise 4.11
Treating as Unpaired Data: The mean and the standard deviation for the 
concentration of Zn2+ at the air-water interface are 0.5178 mg/L and 
0.1732 mg/L, respectively, and the values for the sediment-water interface 
are 0.4445 mg/L and 0.1418 mg/L, respectively. An F-test of the vari-
ances gives an Fexp of 1.493 and an F(0.05, 5, 5) of 7.146. Because Fexp 
is smaller than F(0.05, 5, 5), we have no evidence at a = 0.05 to suggest 
that the difference in variances is significant. Pooling the standard devia-
tions gives an spool of 0.1582 mg/L. An unpaired t-test gives texp as 0.8025. 
Because texp is smaller than t(0.05, 11), which is 2.204, we have no evi-
dence that there is a difference in the concentration of Zn2+ between the 
two interfaces.
Treating as Paired Data: To treat as paired data we need to calculate the 
difference, di, between the concentration of Zn2+ at the air-water interface 
and at the sediment-water interface for each location, where

] ]d [Zn [Zni i i
2 2

air water sed water= -+
-

+
-^ ^h h

Location 1 2 3 4 5 6
di (mg/L) 0.015 0.028 0.067 0.121 0.102 0.107

The mean difference is 0.07333 mg/L with a standard deviation of 0.0441 
mg/L. The null hypothesis and the alternative hypothesis are

: :H d H d0 00 A !=        
and the value of texp is

.
. .t 0 04410

0 07333 6 4 073exp= =

Because texp is greater than t(0.05, 5), which is 2.571, we reject the null 
hypothesis and accept the alternative hypothesis that there is a significant 
difference in the concentration of Zn2+ between the air-water interface 
and the sediment-water interface.
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The difference in the concentration of Zn2+ between locations is much 
larger than the difference in the concentration of Zn2+ between the in-
terfaces. Because out interest is in studying the difference between the in-
terfaces, the larger standard deviation when treating the data as unpaired 
increases the probability of incorrectly retaining the null hypothesis, a 
type 2 error.

Click here to return to the chapter.

Practice Exercise 4.12
You will find small differences between the values you obtain using Excel’s 
built in functions and the worked solutions in the chapter. These differ-
ences arise because Excel does not round off the results of intermediate 
calculations.

Click here to return to the chapter.

Practice Exercise 4.13
Shown here are copies of R sessions for each problem. You will find small 
differences between the values given here for texp and for Fexp and those 
values shown with the worked solutions in the chapter. These differences 
arise because R does not round off the results of intermediate calculations.
Example 4.20

> AnalystA = c(86.82, 87.04, 86.93, 87.01, 86.20, 87.00)
> AnalystB = c(81.01, 86.15, 81.73, 83.19, 80.27, 83.94)
> var.test(AnalystB, AnalystA)

 F test to compare two variances

data:  AnalystB and AnalystA 
F = 45.6358, num df = 5, denom df = 5, p-value = 0.0007148
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval:
   6.385863 326.130970 
sample estimates:
ratio of variances 
          45.63582 

> t.test(AnalystA, AnalystB, var.equal=FALSE)

 Welch Two Sample t-test

data:  AnalystA and AnalystB 
t = 4.6147, df = 5.219, p-value = 0.005177
alternative hypothesis: true difference in means is not equal to 0 
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95 percent confidence interval:
 1.852919 6.383748 
sample estimates:
mean of x mean of y 
 86.83333  82.71500

Example 4.21

> micro = c(129.5, 89.6, 76.6, 52.2, 110.8, 50.4, 72.4, 141.4, 75.0, 34.1, 
60.3)
> elect = c(132.3, 91.0, 73.6, 58.2, 104.2, 49.9, 82.1, 154.1, 73.4, 38.1, 
60.1)
> t.test(micro,elect,paired=TRUE)

 Paired t-test

data:  micro and elect 
t = -1.3225, df = 10, p-value = 0.2155
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -6.028684  1.537775 
sample estimates:
mean of the differences 
              -2.245455 

Click here to return to the chapter.

Practice Exercise 4.14
Because we are selecting a random sample of 100 members from a uni-
form distribution, you will see subtle differences between your plots and 
the plots shown as part of this answer. Here is a record of my R session 
and the resulting plots.
> data = runif(100, min = 0, max = 0)
> data
  [1] 18.928795 80.423589 39.399693 23.757624 30.088554
  [6] 76.622174 36.487084 62.186771 81.115515 15.726404
 [11] 85.765317 53.994179  7.919424 10.125832 93.153308
 [16] 38.079322 70.268597 49.879331 73.115203 99.329723
 [21] 48.203305 33.093579 73.410984 75.128703 98.682127
 [26] 11.433861 53.337359 81.705906 95.444703 96.843476
 [31] 68.251721 40.567993 32.761695 74.635385 70.914957
 [36] 96.054750 28.448719 88.580214 95.059215 20.316015
 [41]  9.828515 44.172774 99.648405 85.593858 82.745774
 [46] 54.963426 65.563743 87.820985 17.791443 26.417481
 [51] 72.832037  5.518637 58.231329 10.213343 40.581266
 [56]  6.584000 81.261052 48.534478 51.830513 17.214508
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 [61] 31.232099 60.545307 19.197450 60.485374 50.414960
 [66] 88.908862 68.939084 92.515781 72.414388 83.195206
 [71] 74.783176 10.643619 41.775788 20.464247 14.547841
 [76] 89.887518 56.217573 77.606742 26.956787 29.641171
 [81] 97.624246 46.406271 15.906540 23.007485 17.715668
 [86] 84.652814 29.379712  4.093279 46.213753 57.963604
 [91] 91.160366 34.278918 88.352789 93.004412 31.055807
 [96] 47.822329 24.052306 95.498610 21.089686  2.629948
> histogram(data, type = “percent”)
> densityplot(data)
> dotchart(data)
> bwplot(data)
Figure 4.26 shows the four plots. The histogram divides the data into 
eight bins, each of which contains between 10 and 15 members. As we 
expect for a uniform distribution, the histogram’s overall pattern suggests 
that each outcome is equally probable. In interpreting the kernel density 
plot, it is important to remember that it treats each data point as if it is 
from a normally distributed population (even though, in this case, the 
underlying population is uniform). Although the plot appears to suggest 
that there are two normally distributed populations, the individual results 
shown at the bottom of the plot provide further evidence for a uniform 
distribution. The dot chart shows no trend along the y-axis, which indi-
cates that the individual members of this sample were drawn at random 
from the population. The distribution along the x-axis also shows no pat-
tern, as expected for a uniform distribution, Finally, the box plot shows 
no evidence of outliers.

Click here to return to the chapter.
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Figure 4.26 Plots generated using 
R to solve Practice Exercise 4.13.
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The American Chemical Society’s Committee on Environmental Improvement defines 
standardization as the process of determining the relationship between the signal and the 
amount of analyte in a sample.1 In Chapter 3 we defined this relationship as

S k n S S k Cortotal A A reag total A A= + =

where Stotal is the signal, nA is the moles of analyte, CA is the analyte’s concentration, kA is the 
method’s sensitivity for the analyte, and Sreag is the contribution to Stotal from sources other 
than the sample. To standardize a method we must determine values for kA and Sreag. Strategies 
for accomplishing this are the subject of this chapter.

1 ACS Committee on Environmental Improvement “Guidelines for Data Acquisition and Data Quality Evaluation in 
Environmental Chemistry,” Anal. Chem. 1980, 52, 2242–2249.
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5A Analytical Standards
To standardize an analytical method we use standards that contain known 
amounts of analyte. The accuracy of a standardization, therefore, depends 
on the quality of the reagents and the glassware we use to prepare these 
standards. For example, in an acid–base titration the stoichiometry of the 
acid–base reaction defines the relationship between the moles of analyte 
and the moles of titrant. In turn, the moles of titrant is the product of the 
titrant’s concentration and the volume of titrant used to reach the equiva-
lence point. The accuracy of a titrimetric analysis, therefore, is never better 
than the accuracy with which we know the titrant’s concentration. 

5A.1 Primary and Secondary Standards

There are two categories of analytical standards: primary standards and sec-
ondary standards. A primary standard is a reagent that we can use to 
dispense an accurately known amount of analyte. For example, a 0.1250-g 
sample of K2Cr2O7 contains 4.249 × 10–4 moles of K2Cr2O7. If we place 
this sample in a 250-mL volumetric flask and dilute to volume, the concen-
tration of K2Cr2O7  in the resulting solution is 1.700 × 10–3 M. A primary 
standard must have a known stoichiometry, a known purity (or assay), and 
it must be stable during long-term storage. Because it is difficult to estab-
lishing accurately the degree of hydration, even after drying, a hydrated 
reagent usually is not a primary standard. 

Reagents that do not meet these criteria are secondary standards. 
The concentration of a secondary standard is determined relative to a pri-
mary standard. Lists of acceptable primary standards are available.2 Appen-
dix 8 provides examples of some common primary standards.

5A.2 Other Reagents

Preparing a standard often requires additional reagents that are not primary 
standards or secondary standards, such as a suitable solvent or reagents 
needed to adjust the standard’s matrix. These solvents and reagents are po-
tential sources of additional analyte, which, if not accounted for, produce 
a determinate error in the standardization. If available, reagent grade 
chemicals that conform to standards set by the American Chemical Society 
are used.3 The label on the bottle of a reagent grade chemical (Figure 5.1) 
lists either the limits for specific impurities or provides an assay for the 
impurities. We can improve the quality of a reagent grade chemical by pu-
rifying it, or by conducting a more accurate assay. As discussed later in the 
chapter, we can correct for contributions to Stotal from reagents used in an 

2 (a) Smith, B. W.; Parsons, M. L. J. Chem. Educ. 1973, 50, 679–681; (b) Moody, J. R.; Green-
burg, P. R.; Pratt, K. W.; Rains, T. C. Anal. Chem. 1988, 60, 1203A–1218A.

3 Committee on Analytical Reagents, Reagent Chemicals, 8th ed., American Chemical Society: 
Washington, D. C., 1993.

See Chapter 9 for a thorough discussion of 
titrimetric methods of analysis.

NaOH is one example of a secondary 
standard. Commercially available NaOH 
contains impurities of NaCl, Na2CO3, 
and Na2SO4, and readily absorbs H2O 
from the atmosphere. To determine the 
concentration of NaOH in a solution, we 
titrate it against a primary standard weak 
acid, such as potassium hydrogen phthal-
ate, KHC8H4O4.
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analysis by including an appropriate blank determination in the analytical 
procedure.

5A.3 Preparing a Standard Solution

It often is necessary to prepare a series of standards, each with a different 
concentration of analyte. We can prepare these standards in two ways. If the 
range of concentrations is limited to one or two orders of magnitude, then 
each solution is best prepared by transferring a known mass or volume of 
the pure standard to a volumetric flask and diluting to volume. 

When working with a larger range of concentrations, particularly a 
range that extends over more than three orders of magnitude, standards 
are best prepared by a serial dilution from a single stock solution. In a 
serial dilution we prepare the most concentrated standard and then dilute 
a portion of that solution to prepare the next most concentrated standard. 
Next, we dilute a portion of the second standard to prepare a third standard, 
continuing this process until we have prepared all of our standards. Serial 
dilutions must be prepared with extra care because an error in preparing 
one standard is passed on to all succeeding standards.

Figure 5.1 Two examples of packaging labels for reagent grade chemicals. The label in (a) pro-
vides the manufacturer’s assay for the reagent, NaBr. Note that potassium is flagged with an 
asterisk (*) because its assay exceeds the limit established by the American Chemical Society 
(ACS). The label in (b) does not provide an assay for impurities; however it indicates that the 
reagent meets ACS specifications by providing the maximum limits for impurities. An assay for 
the reagent, NaHCO3, is provided.

(a) (b)
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5B Calibrating the Signal (Stotal)
The accuracy with which we determine kA and Sreag depends on how accu-
rately we can measure the signal, Stotal. We measure signals using equipment, 
such as glassware and balances, and instrumentation, such as spectropho-
tometers and pH meters. To minimize determinate errors that might affect 
the signal, we first calibrate our equipment and instrumentation by measur-
ing Stotal for a standard with a known response of Sstd, adjusting Stotal until 

S Stotal std=

Here are two examples of how we calibrate signals; other examples are pro-
vided in later chapters that focus on specific analytical methods.

When the signal is a measurement of mass, we determine Stotal using 
an analytical balance. To calibrate the balance’s signal we use a reference 
weight that meets standards established by a governing agency, such as the 
National Institute for Standards and Technology or the American Society 
for Testing and Materials. An electronic balance often includes an internal 
calibration weight for routine calibrations, as well as programs for calibrat-
ing with external weights. In either case, the balance automatically adjusts 
Stotal to match Sstd.

We also must calibrate our instruments. For example, we can evaluate 
a spectrophotometer’s accuracy by measuring the absorbance of a carefully 
prepared solution of 60.06 mg/L K2Cr2O7 in 0.0050 M H2SO4, using 
0.0050 M H2SO4 as a reagent blank.4 An absorbance of 0.640 ± 0.010 
absorbance units at a wavelength of 350.0 nm indicates that the spectrom-
eter’s signal is calibrated properly. 

5C Determining the Sensitivity (kA)
To standardize an analytical method we also must determine the analyte’s 
sensitivity, kA, in equation 5.1 or equation 5.2.

S k n Stotal A A reag= + 5.1

S k C Stotal A A reag= + 5.2
In principle, it is possible to derive the value of kA for any analytical method 
if we understand fully all the chemical reactions and physical processes re-
sponsible for the signal. Unfortunately, such calculations are not feasible if 
we lack a sufficiently developed theoretical model of the physical processes 
or if the chemical reaction’s evince non-ideal behavior. In such situations we 
must determine the value of kA by analyzing one or more standard solutions, 
each of which contains a known amount of analyte. In this section we con-
sider several approaches for determining the value of kA. For simplicity we 
assume that Sreag is accounted for by a proper reagent blank, allowing us to 
replace Stotal in equation 5.1 and equation 5.2 with the analyte’s signal, SA.

4 Ebel, S. Fresenius J. Anal. Chem. 1992, 342, 769.

See Section 2D.1 to review how an elec-
tronic balance works. Calibrating a bal-
ance is important, but it does not elimi-
nate all sources of determinate error when 
measuring mass. See Appendix 9 for a 
discussion of correcting for the buoyancy 
of air.

Be sure to read and follow carefully  the 
calibration instructions provided with any 
instrument you use.
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S k nA A A= 5.3

S k CA A A= 5.4

5C.1 Single-Point versus Multiple-Point Standardizations

The simplest way to determine the value of kA in equation 5.4 is to use 
a single-point standardization in which we measure the signal for a 
standard, Sstd, that contains a known concentration of analyte, Cstd. Substi-
tuting these values into equation 5.4

k C
S

A
std

std= 5.5

gives us the value for kA. Having determined kA, we can calculate the con-
centration of analyte in a sample by measuring its signal, Ssamp, and calculat-
ing CA using equation 5.6.

C k
S

A
A

samp
= 5.6

A single-point standardization is the least desirable method for stan-
dardizing a method. There are two reasons for this. First, any error in our 
determination of kA carries over into our calculation of CA. Second, our 
experimental value for kA is based on a single concentration of analyte. To 
extend this value of kA to other concentrations of analyte requires that 
we assume a linear relationship between the signal and the analyte’s con-
centration, an assumption that often is not true.5 Figure 5.2 shows how 
assuming a constant value of kA leads to a determinate error in CA if kA be-
comes smaller at higher concentrations of analyte. Despite these limitations, 
single-point standardizations find routine use when the expected range for 
the analyte’s concentrations is small. Under these conditions it often is safe 
5 Cardone, M. J.; Palmero, P. J.; Sybrandt, L. B. Anal. Chem. 1980, 52, 1187–1191.

Equation 5.3 and equation 5.4 essentially 
are identical, differing only in whether we 
choose to express the amount of analyte 
in moles or as a concentration. For the re-
mainder of this chapter we will limit our 
treatment to equation 5.4. You can extend 
this treatment to equation 5.3 by replac-
ing CA with nA.

Figure 5.2 Example showing how a single-point standard-
ization leads to a determinate error in an analyte’s reported 
concentration if we incorrectly assume that kA is constant. 
The assumed relationship between Ssamp and CA is based on 
a single standard and is a straight-line; the actual relationship 
between Ssamp and CA becomes curved for larger concentra-
tions of analyte.

(CA)reportedCstd

Sstd

Ssamp

(CA)actual

actual relationship

assumed relationship
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to assume that kA is constant (although you should verify this assumption 
experimentally). This is the case, for example, in clinical labs where many 
automated analyzers use only a single standard.

The better way to standardize a method is to prepare a series of standards, 
each of which contains a different concentration of analyte. Standards are 
chosen such that they bracket the expected range for the analyte’s concen-
tration. A multiple-point standardization should include at least three 
standards, although more are preferable. A plot of Sstd versus Cstd is called a 
calibration curve. The exact standardization, or calibration relationship, 
is determined by an appropriate curve-fitting algorithm. 

There are two advantages to a multiple-point standardization. First, al-
though a determinate error in one standard introduces a determinate error, 
its effect is minimized by the remaining standards. Second, because we 
measure the signal for several concentrations of analyte, we no longer must 
assume kA is independent of the analyte’s concentration. Instead, we can 
construct a calibration curve similar to the “actual relationship” in Figure 
5.2. 

5C.2 External Standards

The most common method of standardization uses one or more external 
standards, each of which contains a known concentration of analyte. We 
call these standards “external” because they are prepared and analyzed sepa-
rate from the samples.

SINGLE EXTERNAL STANDARD

With a single external standard we determine kA using equation 5.5 and 
then calculate the concentration of analyte, CA, using equation 5.6.

Example 5.1
A spectrophotometric method for the quantitative analysis of Pb2+ in 
blood yields an Sstd of 0.474 for a single standard for which the concentra-
tion of lead is 1.75 ppb. What is the concentration of Pb2+ in a sample of 
blood for which Ssamp is 0.361?

SOLUTION

Equation 5.5 allows us to calculate the value of kA using the data for the 
single external standard.

  .
. .k C

S
1 75

0 474 0 2709ppb ppmA
std

std 1= = = -

Having determined the value of kA, we calculate the concentration of Pb2+ 
in the sample of blood is calculated using equation 5.6.

.
. .C k

S
0 2709

0 361 1 33ppm ppbA
A

samp
1= = =-

Appending the adjective “external” to 
the noun “standard” might strike you as 
odd at this point, as it seems reasonable 
to assume that standards and samples are 
analyzed separately. As we will soon learn, 
however, we can add standards to our 
samples and analyze both simultaneously. 

Linear regression, which also is known as 
the method of least squares, is one such al-
gorithm. Its use is covered in Section 5D.
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MULTIPLE EXTERNAL STANDARDS

Figure 5.3 shows a typical multiple-point external standardization. The 
volumetric flask on the left contains a reagent blank and the remaining 
volumetric flasks contain increasing concentrations of Cu2+. Shown be-
low the volumetric flasks is the resulting calibration curve. Because this is 
the most common method of standardization, the resulting relationship is 
called a normal calibration curve. 

When a calibration curve is a straight-line, as it is in Figure 5.3, the 
slope of the line gives the value of kA. This is the most desirable situation 
because the method’s sensitivity remains constant throughout the analyte’s 
concentration range. When the calibration curve is not a straight-line, the 
method’s sensitivity is a function of the analyte’s concentration. In Figure 
5.2, for example, the value of kA is greatest when the analyte’s concentration 
is small and it decreases continuously for higher concentrations of analyte. 
The value of kA at any point along the calibration curve in Figure 5.2 is the 
slope at that point. In either case, a calibration curve allows to relate Ssamp 
to the analyte’s concentration.

Example 5.2
A second spectrophotometric method for the quantitative analysis of Pb2+ 
in blood has a normal calibration curve for which

( . ) .S C0 296 0 003ppbstd std
1 #= +-

What is the concentration of Pb2+ in a sample of blood if Ssamp is 0.397?

0 0.0020 0.0040 0.0060 0.0080
0

0.05

0.10

0.15

0.20

Sstd

Cstd (M)

0.25

Figure 5.3 The photo at the top of the figure shows 
a reagent blank (far left) and a set of five external 
standards for Cu2+ with concentrations that in-
crease from left-to-right. Shown below the external 
standards is the resulting normal calibration curve. 
The absorbance of each standard, Sstd, is shown by 
the filled circles.



154 Analytical Chemistry 2.1

SOLUTION

To determine the concentration of Pb2+ in the sample of blood, we replace 
Sstd in the calibration equation with Ssamp and solve for CA.

.
.

.
. . .C S

0 296
0 003

0 296
0 397 0 003 1 33ppb ppb ppbA

samp
1 1=

-
= - =- -

It is worth noting that the calibration equation in this problem includes 
an extra term that does not appear in equation 5.6. Ideally we expect 
our calibration curve to have a signal of zero when CA is zero. This is the 
purpose of using a reagent blank to correct the measured signal. The extra 
term of +0.003 in our calibration equation results from the uncertainty 
in measuring the signal for the reagent blank and the standards.

An external standardization allows us to analyze a series of samples 
using a single calibration curve. This is an important advantage when we 
have many samples to analyze. Not surprisingly, many of the most common 
quantitative analytical methods use an external standardization. 

There is a serious limitation, however, to an external standardization. 
When we determine the value of kA using equation 5.5, the analyte is pres-
ent in the external standard’s matrix, which usually is a much simpler ma-
trix than that of our samples. When we use an external standardization we 
assume the matrix does not affect the value of kA. If this is not true, then 
we introduce a proportional determinate error into our analysis. This is not 
the case in Figure 5.4, for instance, where we show calibration curves for 
an analyte in the sample’s matrix and in the standard’s matrix. In this case, 
using the calibration curve for the external standards leads to a negative de-
terminate error in analyte’s reported concentration. If we expect that matrix 
effects are important, then we try to match the standard’s matrix to that of 
the sample, a process known as matrix matching. If we are unsure of the 
sample’s matrix, then we must show that matrix effects are negligible or use 
an alternative method of standardization. Both approaches are discussed in 
the following section.

Practice Exercise 5.1
Figure 5.3 shows a normal calibration curve for the quantitative analysis 
of Cu2+. The equation for the calibration curve is

Sstd = 29.59 M–1 × Cstd + 0.0015
What is the concentration of Cu2+ in a sample whose absorbance, Ssamp, 
is 0.114? Compare your answer to a one-point standardization where a 
standard of 3.16 × 10–3 M Cu2+ gives a signal of 0.0931.
Click here to review your answer to this exercise.

The one-point standardization in this ex-
ercise uses data from the third volumetric 
flask in Figure 5.3.

The matrix for the external standards in 
Figure 5.3, for example, is dilute ammo-
nia. Because the Cu (NH )3 4

2+  complex 
absorbs more strongly than Cu2+, adding 
ammonia increases the signal’s magnitude.  
If we fail to add the same amount of am-
monia to our samples, then we will in-
troduce a proportional determinate error 
into our analysis.
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5C.3 Standard Additions

We can avoid the complication of matching the matrix of the standards to 
the matrix of the sample if we carry out the standardization in the sample. 
This is known as the method of standard additions. 

SINGLE STANDARD ADDITION

The simplest version of a standard addition is shown in Figure 5.5. First we 
add a portion of the sample, Vo, to a volumetric flask, dilute it to volume, 
Vf, and measure its signal, Ssamp. Next, we add a second identical portion 
of sample to an equivalent volumetric flask along with a spike, Vstd, of an 
external standard whose concentration is Cstd. After we dilute the spiked 
sample to the same final volume, we measure its signal, Sspike. The following 
two equations relate Ssamp and Sspike to the concentration of analyte, CA, in 
the original sample.

S k C V
V

samp A A
f

o= 5.7

S k C V
V C V

V
spike A A

f

o
std

f

std= +a k 5.8

As long as Vstd is small relative to Vo, the effect of the standard’s matrix on 
the sample’s matrix is insignificant. Under these conditions the value of kA 
is the same in equation 5.7 and equation 5.8. Solving both equations for 
kA and equating gives

C V
V

S
C V

V C V
V

S

A
f

o

samp

A
f

o
std

f

std

spike
=

+ 5.9

which we can solve for the concentration of analyte, CA, in the original 
sample.

(CA)reported

Ssamp

(CA)actual

standard’s
matrix

sample’s
matrix

Figure 5.4 Calibration curves for an analyte in the 
standard’s matrix and in the sample’s matrix. If the 
matrix affects the value of kA, as is the case here, then 
we introduce a proportional determinate error into 
our analysis if we use a normal calibration curve.

The ratios Vo/Vf  and Vstd/Vf  account for 
the dilution of the sample and the stan-
dard, respectively.
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Example 5.3
A third spectrophotometric method for the quantitative analysis of Pb2+ in 
blood yields an Ssamp of 0.193 when a 1.00 mL sample of blood is diluted 
to 5.00 mL. A second 1.00 mL sample of blood is spiked with 1.00 mL of 
a 1560-ppb Pb2+ external standard and diluted to 5.00 mL, yielding an 
Sspike of 0.419. What is the concentration of Pb2+ in the original sample 
of blood?

SOLUTION

We begin by making appropriate substitutions into equation 5.9 and solv-
ing for CA. Note that all volumes must be in the same units; thus, we first 
covert Vstd from 1.00 mL to 1.00 × 10–3 mL.

.
.
.

.
.

.
.

.
C C5 00

1 00
0 193

5 00
1 00 1560 5 00

1 00 10
0 419

mL
mL

mL
mL ppb mL

mL
A A

3#
=

+
-

.
.

. .
.

C C0 200
0 193

0 200 0 3120
0 419

ppbA A
= +

. . .C C0 0386 0 0602 0 0838ppbA A+ =

. .C0 0452 0 0602 ppbA=

.C 1 33 ppbA=

The concentration of Pb2+ in the original sample of blood is 1.33 ppb.

add Vo of CA add Vstd of Cstd

dilute to Vf

C
V
VA

o

f

× C
V
V

C
V
VA

f
std

std

f

× + ×Concentration
of Analyte

o

Figure 5.5 Illustration showing the method of stan-
dard additions. The volumetric flask on the left con-
tains a portion of the sample, Vo, and the volumetric 
flask on the right contains an identical portion of the 
sample and a spike, Vstd, of a standard solution of the 
analyte. Both flasks are diluted to the same final vol-
ume, Vf. The concentration of analyte in each flask is 
shown at the bottom of the figure where CA is the ana-
lyte’s concentration in the original sample and Cstd is 
the concentration of analyte in the external standard.
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It also is possible to add the standard addition directly to the sample, 
measuring the signal both before and after the spike (Figure 5.6). In this 
case the final volume after the standard addition is Vo + Vstd and equation 
5.7, equation 5.8, and equation 5.9 become

S k Csamp A A=

S k C V V
V C V V

V
spike A A

o std

o
std

o std

std= + + +a k 5.10

C
S

C V V
V C V V

V
S

A

samp

A
o std

o
std

o std

std

spike
=

+ + +
5.11

Example 5.4
A fourth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood yields an Ssamp of 0.712 for a 5.00 mL sample of blood. After spik-
ing the blood sample with 5.00 mL of a 1560-ppb Pb2+ external standard, 
an Sspike of 1.546 is measured. What is the concentration of Pb2+ in the 
original sample of blood?

SOLUTION

To determine the concentration of Pb2+ in the original sample of blood, 
we make appropriate substitutions into equation 5.11 and solve for CA.

.

.
.

.
.

.
C C

0 712

5 005
5 00 1560 5 005

5 00 10
1 546

mL
mL ppb mL

mLA
A

3#
=

+
-

.
. .

.
C C

0 712
0 9990 1 558

1 546
ppbA A

= +

add Vstd of Cstd

Concentration
of Analyte

Vo Vo

CA
C

V
V V

C
V

V VA
o

o s td
std

std

o s td+
+

+

Figure 5.6 Illustration showing an alternative form of the method of standard 
additions. In this case we add the spike of external standard directly to the sample 
without any further adjust in the volume.

Vo + Vstd = 5.000 mL + 5.00×10–3 mL 
                 = 5.005 mL
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. . .C C0 7113 1 109 1 546ppbA A+ =

 .C 1 33 ppbA=

The concentration of Pb2+ in the original sample of blood is 1.33 ppb.

MULTIPLE STANDARD ADDITIONS

We can adapt a single-point standard addition into a multiple-point stan-
dard addition by preparing a series of samples that contain increasing 
amounts of the external standard. Figure 5.7 shows two ways to plot a 
standard addition calibration curve based on equation 5.8. In Figure 5.7a 
we plot Sspike against the volume of the spikes, Vstd. If kA is constant, then 
the calibration curve is a straight-line. It is easy to show that the x-intercept 
is  equivalent to –CAVo/Cstd.

Example 5.5
Beginning with equation 5.8 show that the equations in Figure 5.7a for 
the slope, the y-intercept, and the x-intercept are correct.

SOLUTION

We begin by rewriting equation 5.8 as

S V
k C V

V
k C Vspike

f

A A o

f

A std
std#= +

which is in the form of the equation for a straight-line

y = y-intercept + slope × x

where y is Sspike and x is Vstd. The slope of the line, therefore, is kACstd/Vf 
and the y-intercept is kACAVo/Vf. The x-intercept is the value of x when y 
is zero, or

V
k C V

V
k V x0 -intercept

f

A A o

f

A std #= +

k C V
k C V V

C
C Vx-intercept

A std f

A A o f

std

A o=- =-

Practice Exercise 5.2
Beginning with equation 5.8 show that the equations in Figure 5.7b for 
the slope, the y-intercept, and the x-intercept are correct.
Click here to review your answer to this exercise.

Because we know the volume of the original sample, Vo, and the con-
centration of the external standard, Cstd, we can calculate the analyte’s con-
centrations from the x-intercept of a multiple-point standard additions. 
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Example 5.6
A fifth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood uses a multiple-point standard addition based on equation 5.8. 
The original blood sample has a volume of 1.00 mL and the standard used 
for spiking the sample has a concentration of 1560 ppb Pb2+. All samples 
were diluted to 5.00 mL before measuring the signal. A calibration curve 
of Sspike versus Vstd has the following equation

.S V0 266 312 mLspike std
1 #= + -

What is the concentration of Pb2+ in the original sample of blood?

SOLUTION

To find the x-intercept we set Sspike equal to zero.

 . V0 0 266 312 mL std
1 #= + -

-4.00 -2.00 0 2.00 4.00 6.00 8.00 10.00 12.00
0
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0.20
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Cstd
Vstd

Vf
×

slope = kA

x-intercept = 
-CAVo

Vf

0
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0.20
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Sspike
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kACstd

Vf

x-intercept = 
-CAVo

y-intercept = 
kACAVo

Vf

(a)

(b)
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y-intercept = 
kACAVo

Vf

Figure 5.7 Shown at the top of the 
figure is a set of six standard additions 
for the determination of Mn2+. The 
flask on the left is a 25.00 mL sample 
diluted to 50.00 mL with water. The 
remaining flasks contain 25.00 mL of 
sample and, from left-to-right, 1.00, 
2.00, 3.00, 4.00, and 5.00 mL spikes 
of an external standard that is 100.6 
mg/L Mn2+. Shown below are two 
ways to plot the standard additions 
calibration curve. The absorbance for 
each standard addition, Sspike, is shown 
by the filled circles.
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Solving for Vstd, we obtain a value of –8.526 × 10–4 mL for the x-intercept. 
Substituting the x-intercept’s value into the equation from Figure 5.7a 

. .
C

C V C8 526 10 1560
1 00mL ppb

mL
std

A o A4# #- =- =--

and solving for CA gives the concentration of Pb2+ in the blood sample as 
1.33 ppb.

Since we construct a standard additions calibration curve in the sample, 
we can not use the calibration equation for other samples. Each sample, 
therefore, requires its own standard additions calibration curve. This is a 
serious drawback if you have many samples. For example, suppose you need 
to analyze 10 samples using a five-point calibration curve. For a normal 
calibration curve you need to analyze only 15 solutions (five standards and 
ten samples). If you use the method of standard additions, however, you 
must analyze 50 solutions (each of the ten samples is analyzed five times, 
once before spiking and after each of four spikes).

USING A STANDARD ADDITION TO IDENTIFY MATRIX EFFECTS

We can use the method of standard additions to validate an external stan-
dardization when matrix matching is not feasible. First, we prepare a nor-
mal calibration curve of Sstd versus Cstd and determine the value of kA from 
its slope. Next, we prepare a standard additions calibration curve using 
equation 5.8, plotting the data as shown in Figure 5.7b. The slope of this 
standard additions calibration curve provides an independent determina-
tion of kA. If there is no significant difference between the two values of 
kA, then we can ignore the difference between the sample’s matrix and that 
of the external standards. When the values of kA are significantly different, 

Practice Exercise 5.3
Figure 5.7 shows a standard additions calibration curve for the quantita-
tive analysis of Mn2+. Each solution contains 25.00 mL of the original 
sample and either 0, 1.00, 2.00, 3.00, 4.00, or 5.00 mL of a 100.6 mg/L 
external standard of Mn2+. All standard addition samples were diluted to 
50.00 mL with water before reading the absorbance. The equation for the 
calibration curve in Figure 5.7a is

Sstd = 0.0854 × Vstd + 0.1478

What is the concentration of Mn2+ in this sample? Compare your answer 
to the data in Figure 5.7b, for which the calibration curve is

Sstd = 0.0425 × Cstd(Vstd/Vf) + 0.1478

Click here to review your answer to this exercise.
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then using a normal calibration curve introduces a proportional determi-
nate error. 

5C.4 Internal Standards

To use an external standardization or the method of standard additions, we 
must be able to treat identically all samples and standards. When this is not 
possible, the accuracy and precision of our standardization may suffer. For 
example, if our analyte is in a volatile solvent, then its concentration will 
increase if we lose solvent to evaporation. Suppose we have a sample and a 
standard with identical concentrations of analyte and identical signals. If 
both experience the same proportional loss of solvent, then their respective 
concentrations of analyte and signals remain identical. In effect, we can ig-
nore evaporation if the samples and the standards experience an equivalent 
loss of solvent. If an identical standard and sample lose different amounts 
of solvent, however, then their respective concentrations and signals are 
no longer equal. In this case a simple external standardization or standard 
addition is not possible.

We can still complete a standardization if we reference the analyte’s 
signal to a signal from another species that we add to all samples and stan-
dards. The species, which we call an internal standard, must be different 
than the analyte.

Because the analyte and the internal standard receive the same treat-
ment, the ratio of their signals is unaffected by any lack of reproducibility in 
the procedure. If a solution contains an analyte of concentration CA and an 
internal standard of concentration CIS, then the signals due to the analyte, 
SA, and the internal standard, SIS, are

S k CA A A=

S k CIS IS IS=

where kA and kIS are the sensitivities for the analyte and the internal stan-
dard, respectively. Taking the ratio of the two signals gives the fundamental 
equation for an internal standardization.

S
S

k C
k C K C

C
IS

A

IS IS

A A

IS

A#= = 5.12

Because K is a ratio of the analyte’s sensitivity and the internal standard’s 
sensitivity, it is not necessary to determine independently values for either 
kA or kIS. 

SINGLE INTERNAL STANDARD

In a single-point internal standardization, we prepare a single standard that 
contains the analyte and the internal standard, and use it to determine the 
value of K in equation 5.12.
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K C
C

S
S

A

IS

std IS

A

std
#= a ak k 5.13

Having standardized the method, the analyte’s concentration is given by

C K
C

S
S

A
IS

IS

A

samp
#= a k

Example 5.7
A sixth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood uses Cu2+ as an internal standard. A standard that is 1.75 ppb 
Pb2+ and 2.25 ppb Cu2+ yields a ratio of (SA/SIS)std of 2.37. A sample of 
blood spiked with the same concentration of Cu2+ gives a signal ratio, 
(SA/SIS)samp, of 1.80. What is the concentration of Pb2+ in the sample of 
blood?

SOLUTION

Equation 5.13 allows us to calculate the value of K using the data for the 
standard

.
.

. .K C
C

S
S

1 75
2 25

2 37 3 05ppb Pb
ppb Cu

ppb Pb
ppb Cu

A

IS

std IS

A

std
2

2

2

2

# #= = =+

+

+

+a ak k
The concentration of Pb2+, therefore, is

.

.
. .C K

C
S
S

3 05

2 25
1 80 1 33

ppb Pb
ppb Cu
ppb Cu

ppb PbA
IS

IS

A

samp
2

2

2
2# #= = =

+

+

+
+a k

MULTIPLE INTERNAL STANDARDS

A single-point internal standardization has the same limitations as a single-
point normal calibration. To construct an internal standard calibration 
curve we prepare a series of standards, each of which contains the same 
concentration of internal standard and a different concentrations of analyte. 
Under these conditions a calibration curve of (SA/SIS)std versus CA is linear 
with a slope of K/CIS.   

Example 5.8
A seventh spectrophotometric method for the quantitative analysis of Pb2+ 

in blood gives a linear internal standards calibration curve for which

( . ) .S
S C2 11 0 006ppb

IS

A

std
A

1 #= --a k
What is the ppb Pb2+ in a sample of blood if (SA/SIS)samp is 2.80?

SOLUTION

To determine the concentration of Pb2+ in the sample of blood we replace 
(SA/SIS)std in the calibration equation with (SA/SIS)samp and solve for CA.

Although the usual practice is to prepare 
the standards so that each contains an 
identical amount of the internal standard, 
this is not a requirement.
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.

.

.
. . .C S

S

2 11

0 006

2 11
2 80 0 006 1 33ppb ppb PbA

IS

A

samp
1 1

2=
+

= + =- -
+

a k
The concentration of Pb2+ in the sample of blood is 1.33 ppb.                    

In some circumstances it is not possible to prepare the standards so 
that each contains the same concentration of internal standard. This is the 
case, for example, when we prepare samples by mass instead of volume. We 
can still prepare a calibration curve, however, by plotting (SA/SIS)std versus 
CA/CIS, giving a linear calibration curve with a slope of K.

5D Linear Regression and Calibration Curves
In a single-point external standardization we determine the value of kA 
by measuring the signal for a single standard that contains a known con-
centration of analyte. Using this value of kA and our sample’s signal, we 
then calculate the concentration of analyte in our sample (see Example 
5.1). With only a single determination of kA, a quantitative analysis using 
a single-point external standardization is straightforward.

A multiple-point standardization presents a more difficult problem. 
Consider the data in Table 5.1 for a multiple-point external standardiza-
tion. What is our best estimate of the relationship between Sstd and Cstd?  It 
is tempting to treat this data as five separate single-point standardizations, 
determining kA for each standard, and reporting the mean value for the 
five trials. Despite it simplicity, this is not an appropriate way to treat a 
multiple-point standardization.

So why is it inappropriate to calculate an average value for kA using 
the data in Table 5.1? In a single-point standardization we assume that the 
reagent blank (the first row in Table 5.1) corrects for all constant sources 
of determinate error. If this is not the case, then the value of kA from a 
single-point standardization has a constant determinate error. Table 5.2 
demonstrates how an uncorrected constant error affects our determination 

Table 5.1 Data for a Hypothetical Multiple-Point External 
Standardization

Cstd (arbitrary units) Sstd (arbitrary units) kA = Sstd/ Cstd
0.000 0.00 —
0.100 12.36 123.6
0.200 24.83 124.2
0.300 35.91 119.7
0.400 48.79 122.0
0.500 60.42 122.8

mean value for kA = 122.5

You might wonder if it is possible to in-
clude an internal standard in the method 
of standard additions to correct for both 
matrix effects and uncontrolled variations 
between samples; well, the answer is yes 
as described in the paper “Standard Dilu-
tion Analysis,” the full reference for which 
is Jones, W. B.; Donati, G. L.; Calloway, 
C. P.; Jones, B. T. Anal. Chem. 2015, 87, 
2321-2327.
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of kA. The first three columns show the concentration of analyte in a set of 
standards, Cstd, the signal without any source of constant error, Sstd, and 
the actual value of kA for five standards. As we expect, the value of kA is the 
same for each standard. In the fourth column we add a constant determi-
nate error of +0.50 to the signals, (Sstd)e. The last column contains the cor-
responding apparent values of kA. Note that we obtain a different value of 
kA for each standard and that each apparent kA is greater than the true value. 

How do we find the best estimate for the relationship between the sig-
nal and the concentration of analyte in a multiple-point standardization?  
Figure 5.8 shows the data in Table 5.1 plotted as a normal calibration curve. 
Although the data certainly appear to fall along a straight line, the actual 
calibration curve is not intuitively obvious. The process of determining the 
best equation for the calibration curve is called linear regression.

5D.1 Linear Regression of Straight Line Calibration Curves

When a calibration curve is a straight-line, we represent it using the follow-
ing mathematical equation

y x0 1b b= + 5.14
where y is the analyte’s signal, Sstd, and x is the analyte’s concentration, Cstd. 
The constants b0 and b1 are, respectively, the calibration curve’s expected 
y-intercept and its expected slope. Because of uncertainty in our measure-
ments, the best we can do is to estimate values for b0 and b1, which we 
represent as b0 and b1. The goal of a linear regression analysis is to de-
termine the best estimates for b0 and b1. How we do this depends on the 
uncertainty in our measurements.

5D.2 Unweighted Linear Regression with Errors in y

The most common method for completing the linear regression for equa-
tion 5.14 makes three assumptions:  

Table 5.2 Effect of a Constant Determinate Error on the Value of kA From a Single-
Point Standardization

Cstd

Sstd 
(without constant error)

kA = Sstd/ Cstd 
(actual)

(Sstd)e
(with constant error)

kA = (Sstd)e/ Cstd 
(apparent)

1.00 1.00 1.00 1.50 1.50
2.00 2.00 1.00 2.50 1.25
3.00 3.00 1.00 3.50 1.17
4.00 4.00 1.00 4.50 1.13
5.00 5.00 1.00 5.50 1.10

mean kA (true) = 1.00 mean kA (apparent) = 1.23
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(1)  that the difference between our experimental data and the calculated 
regression line is the result of indeterminate errors that affect y, 

(2) that indeterminate errors that affect y are normally distributed, and 
(3) that the indeterminate errors in y are independent of the value of x. 

Because we assume that the indeterminate errors are the same for all stan-
dards, each standard contributes equally in our estimate of the slope and 
the y-intercept. For this reason the result is considered an unweighted 
linear regression.

The second assumption generally is true because of the central limit the-
orem, which we considered in Chapter 4. The validity of the two remaining 
assumptions is less obvious and you should evaluate them before you accept 
the results of a linear regression. In particular the first assumption always is 
suspect because there certainly is some indeterminate error in the measure-
ment of x. When we prepare a calibration curve, however, it is not unusual 
to find that the uncertainty in the signal, Sstd, is significantly larger than the 
uncertainty in the analyte’s concentration, Cstd. In such circumstances the 
first assumption is usually reasonable.

HOW A LINEAR REGRESSION WORKS

To understand the logic of a linear regression consider the example shown 
in Figure 5.9, which shows three data points and two possible straight-lines 
that might reasonably explain the data. How do we decide how well these 
straight-lines fit the data, and how do we determine the best straight-line?

Let’s focus on the solid line in Figure 5.9. The equation for this line is

y b b x0 1= +V 5.15

Figure 5.8 Normal calibration curve data for the hypothetical multiple-point 
external standardization in Table 5.1.
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where b0 and b1 are estimates for the y-intercept and the slope, and yV  is the 
predicted value of y for any value of x. Because we assume that all uncer-
tainty is the result of indeterminate errors in y, the difference between y and 
yV  for each value of x is the residual error, r, in our mathematical model.

( )r y yi i i= -V
Figure 5.10 shows the residual errors for the three data points. The smaller 
the total residual error, R, which we define as

( )R y yi i
i

n
2

1
= -

=

V/ 5.16

the better the fit between the straight-line and the data. In a linear regres-
sion analysis, we seek values of b0 and b1 that give the smallest total residual 
error. 

Figure 5.9 Illustration showing three data points and two 
possible straight-lines that might explain the data. The goal 
of a linear regression is to find the mathematical model, in 
this case a straight-line, that best explains the data.

Figure 5.10 Illustration showing the evaluation of a linear regression in which we assume that all un-
certainty is the result of indeterminate errors in y. The points in blue, yi, are the original data and the 
points in red, yi

V , are the predicted values from the regression equation, y b b x0 1= +V .The smaller 
the total residual error (equation 5.16), the better the fit of the straight-line to the data.

ŷ1 ŷ2

ŷ3

r y y1 1 1� ( ˆ )

r y y2 2 2� ( ˆ ) r y y3 3 3� ( ˆ )

ŷ b b x� �0 1

y1

y2

y3

If you are reading this aloud, you pro-
nounce yT  as y-hat.

The reason for squaring the individual 
residual errors is to prevent a positive re-
sidual error from canceling out a negative 
residual error. You have seen this before in 
the equations for the sample and popula-
tion standard deviations. You also can see 
from this equation why a linear regression 
is sometimes called the method of least 
squares.
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FINDING THE SLOPE AND Y-INTERCEPT

Although we will not formally develop the mathematical equations for a 
linear regression analysis, you can find the derivations in many standard 
statistical texts.6 The resulting equation for the slope, b1, is 

b
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n x y x y
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i
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i i
i
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c m/ /
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5.17

and the equation for the y-intercept, b0, is

b n

y b xi
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n
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1
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= =

/ / 5.18

Although equation 5.17 and equation 5.18 appear formidable, it is neces-
sary only to evaluate the following four summations 
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1= = = =
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Many calculators, spreadsheets, and other statistical software packages are 
capable of performing a linear regression analysis based on this model. To 
save time and to avoid tedious calculations, learn how to use one of these 
tools. For illustrative purposes the necessary calculations are shown in detail 
in the following example.

Example 5.9
Using the data from Table 5.1, determine the relationship between Sstd  and 
Cstd using an unweighted linear regression.

SOLUTION

We begin by setting up a table to help us organize the calculation.

xi yi xiyi xi
2

0.000 0.00 0.000 0.000
0.100 12.36 1.236 0.010
0.200 24.83 4.966 0.040
0.300 35.91 10.773 0.090
0.400 48.79 19.516 0.160
0.500 60.42 30.210 0.250

Adding the values in each column gives

xi
i

n

1=
/  = 1.500   yi

i

n

1=
/  = 182.31   x yi

i

n

i
1=
/  = 66.701   xi

i

n
2

1=
/  = 0.550

Substituting these values into equation 5.17 and equation 5.18, we find 
that the slope and the y-intercept are

6 See, for example, Draper, N. R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New 
York, 1998.

See Section 5F in this chapter for details 
on completing a linear regression analysis 
using Excel and R.

Equations 5.17 and 5.18 are written in 
terms of the general variables x and y. As 
you work through this example, remem-
ber that x corresponds to Cstd, and that y 
corresponds to Sstd. 
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( . ) ( . )
( . ) ( . . ) . .b 6 0 550 1 500
6 66 701 1 500 182 31 120 706 120 711 2#
# #

.=
-

-
=  

. ( . . ) . .b 6
182 31 120 706 1 500 0 209 0 211

#
.=

-
=

The relationship between the signal and the analyte, therefore, is

Sstd = 120.71 × Cstd + 0.21

For now we keep two decimal places to match the number of decimal 
places in the signal. The resulting calibration curve is shown in Figure 5.11.

UNCERTAINTY IN THE REGRESSION ANALYSIS

As shown in Figure 5.11, because indeterminate errors in the signal, the 
regression line may not pass through the exact center of each data point. 
The cumulative deviation of our data from the regression line—that is, the 
total residual error—is proportional to the uncertainty in the regression. 
We call this uncertainty the standard deviation about the regression, 
sr, which is equal to

( )
s n

y y

2r

i i
i

n
2

1= -

-
=

V/ 5.19

where yi is the ith experimental value, and yi
V  is the corresponding value pre-

dicted by the regression line in equation 5.15. Note that the denominator 
of equation 5.19 indicates that our regression analysis has n–2 degrees of 
freedom—we lose two degree of freedom because we use two parameters, 
the slope and the y-intercept, to calculate yi

V .

Figure 5.11 Calibration curve for the data in Table 5.1 and Example 5.9.
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Did you notice the similarity between the 
standard deviation about the regression 
(equation 5.19) and the standard devia-
tion for a sample (equation 4.1)?
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i
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n

1=
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-
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A more useful representation of the uncertainty in our regression analy-
sis is to consider the effect of indeterminate errors on the slope, b1, and the 
y-intercept, b0, which we express as standard deviations. 
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5.21

We use these standard deviations to establish confidence intervals for the 
expected slope, b1, and the expected y-intercept, b0

b tsb1 1 1!b = 5.22

b tsb0 0 0!b = 5.23
where we select t for a significance level of a and for n–2 degrees of free-
dom. Note that equation 5.22 and equation 5.23 do not contain a factor of  

n 1-^ h  because the confidence interval is based on a single regression line. 

Example 5.10
Calculate the 95% confidence intervals for the slope and y-intercept from 
Example 5.9.

SOLUTION

We begin by calculating the standard deviation about the regression. To do 
this we must calculate the predicted signals, yi

V , using the slope and y-in-
tercept from Example 5.9, and the squares of the residual error, y yi i

2
-_ iV . 

Using the last standard as an example, we find that the predicted signal is

. ( . . ) .y b b x 0 209 120 706 0 500 60 5626 0 1 6 #= + = + =V
and that the square of the residual error is

( . . ) . .y y 60 42 60 562 0 2016 0 202i i

2 2 .- = - =_ iV
The following table displays the results for all six solutions.

xi yi yi
V y yi i

2
-_ iV

0.000 0.00 0.209 0.0437
0.100 12.36 12.280 0.0064
0.200 24.83 24.350 0.2304
0.300 35.91 36.421 0.2611
0.400 48.79 48.491 0.0894
0.500 60.42 60.562 0.0202

You might contrast equation 5.22 and 
equation 5.23 with equation 4.12 

X
n

ts
!n =

for the confidence interval around a sam-
ple’s mean value.

As you work through this example, re-
member that x corresponds to Cstd, and 
that y corresponds to Sstd. 
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Adding together the data in the last column gives the numerator of equa-
tion 5.19 as 0.6512; thus, the standard deviation about the regression is

. .s 6 2
0 6512 0 4035r = - =

Next we calculate the standard deviations for the slope and the y-intercept 
using equation 5.20 and equation 5.21. The values for the summation 
terms are from in Example 5.9.
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Finally, the 95% confidence intervals (a = 0.05, 4 degrees of freedom) for 
the slope and y-intercept are

. ( . . ) . .b ts 120 706 2 78 0 965 120 7 2 7b1 1 1! ! # !b = = =

. ( . . ) . .b ts 0 209 2 78 0 292 0 2 0 8b0 0 0! ! # !b = = =

The standard deviation about the regression, sr, suggests that the signal, Sstd, 
is precise to one decimal place. For this reason we report the slope and the 
y-intercept to a single decimal place.

MINIMIZING UNCERTAINTY IN CALIBRATION CURVES

To minimize the uncertainty in a calibration curve’s slope and y-intercept, 
we evenly space our standards over a wide range of analyte concentrations. 
A close examination of equation 5.20 and equation 5.21 help us appreci-
ate why this is true. The denominators of both equations include the term 

x xi
2-^ h/ . The larger the value of this term—which we accomplish by 

increasing the range of x around its mean value—the smaller the standard 
deviations in the slope and the y-intercept. Furthermore, to minimize the 
uncertainty in the y-intercept, it helps to decrease the value of the term  

xi/  in equation 5.21, which we accomplish by including standards for 
lower concentrations of the analyte.   

OBTAINING THE ANALYTE’S CONCENTRATION FROM A REGRESSION EQUATION

Once we have our regression equation, it is easy to determine the concen-
tration of analyte in a sample. When we use a normal calibration curve, 
for example, we measure the signal for our sample, Ssamp, and calculate the 
analyte’s concentration, CA, using the regression equation.

You can find values for t in Appendix 4.
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C b
S b
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1

0
=

- 5.24

What is less obvious is how to report a confidence interval for CA that 
expresses the uncertainty in our analysis. To calculate a confidence interval 
we need to know the standard deviation in the analyte’s concentration, sCA , 
which is given by the following equation

( )
s b

s
m n b C C

S S1 1
C

r

std std
i

n
samp std

1
1

2 2

1

2
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i

= + +
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-

=

^
^

h
h/ 5.25

where m is the number of replicate we use to establish the sample’s average 
signal, S samp , n is the number of calibration standards, S std  is the average 
signal for the calibration standards, and Cstdi  and C std  are the individual and 
the mean concentrations for the calibration standards.7 Knowing the value 
of  sCA , the confidence interval for the analyte’s concentration is

C tsC A CA A!n =

where nCA is the expected value of CA in the absence of determinate errors, 
and with the value of t is based on the desired level of confidence and n–2 
degrees of freedom.

Example 5.11
Three replicate analyses for a sample that contains an unknown concentra-
tion of analyte, yield values for Ssamp of 29.32, 29.16 and 29.51 (arbitrary 
units). Using the results from Example 5.9 and Example 5.10, determine 
the analyte’s concentration, CA, and its 95% confidence interval.

SOLUTION

The average signal, S samp , is 29.33, which, using equation 5.24 and the 
slope and the y-intercept from Example 5.9, gives the analyte’s concentra-
tion as

.
. . .C b

S b
120 706

29 33 0 209 0 241A
samp

1

0= = - =-

To calculate the standard deviation for the analyte’s concentration we must 
determine the values for Sstd  and for C Cstd std

2
i-^ h/ . The former is just 

the average signal for the calibration standards, which, using the data in 
Table 5.1, is 30.385. Calculating  C Cstd std

2
i-^ h/  looks formidable, but 

we can simplify its calculation by recognizing that this sum-of-squares is 
the numerator in a standard deviation equation; thus,

( ) ( ) ( )C C s n 1std std
i

n

C
2

1

2
i std #- = -

=

/

7 (a) Miller, J. N. Analyst 1991, 116, 3–14; (b) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Che-
mometrics, Wiley-Interscience: New York, 1986, pp. 126-127; (c) Analytical Methods Commit-
tee “Uncertainties in concentrations estimated from calibration experiments,” AMC Technical 
Brief, March 2006.

Equation 5.25 is written in terms of a cali-
bration experiment. A more general form 
of the equation, written in terms of x and 
y, is given here.
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h
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A close examination of equation 5.25 
should convince you that the uncertainty 
in CA is smallest when the sample’s av-
erage signal, S samp , is equal to the aver-
age signal for the standards, S std . When 
practical, you should plan your calibration 
curve so that Ssamp falls in the middle of 
the calibration curve.
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where  sCstd  is the standard deviation for the concentration of analyte in 
the calibration standards. Using the data in Table 5.1 we find that sCstd  is 
0.1871 and

( . ) .C C 0 1872 6 1 0 175std std
i

n
2 2

1
i #- = - =

=

^ ^h h/
Substituting known values into equation 5.25 gives

.
.
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( . . ) .s 120 706

0 4035
3
1

6
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29 33 30 385 0 0024C 2

2

A #
= + +

-
=

Finally, the 95% confidence interval for 4 degrees of freedom is

. ( . . ) . .C ts 0 241 2 78 0 0024 0 241 0 007C A CA A! ! # !n = = =

Figure 5.12 shows the calibration curve with curves showing the 95% 
confidence interval for CA.

In a standard addition we determine the analyte’s concentration by 
extrapolating the calibration curve to the x-intercept. In this case the value 
of CA is

C x b
b-interceptA
1

0= = -

and the standard deviation in CA is
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h/
where n is the number of standard additions (including the sample with no 
added standard), and S std  is the average signal for the n standards. Because 
we determine the analyte’s concentration by extrapolation, rather than by 

You can find values for t in Appendix 4.

Figure 5.12 Example of a normal calibration curve with 
a superimposed confidence interval for the analyte’s con-
centration. The points in blue are the original data from 
Table 5.1. The black line is the normal calibration curve 
as determined in Example 5.9. The red lines show the 
95% confidence interval for CA assuming a single deter-
mination of Ssamp.
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interpolation, sCA  for the method of standard additions generally is larger 
than for a normal calibration curve.

EVALUATING A LINEAR REGRESSION MODEL

You should never accept the result of a linear regression analysis without 
evaluating the validity of the model. Perhaps the simplest way to evaluate 
a regression analysis is to examine the residual errors. As we saw earlier, the 
residual error for a single calibration standard, ri, is

( )r y yi i i= -

If the regression model is valid, then the residual errors should be distrib-
uted randomly about an average residual error of zero, with no apparent 
trend toward either smaller or larger residual errors (Figure 5.13a). Trends 
such as those in Figure 5.13b and Figure 5.13c provide evidence that at least 
one of the model’s assumptions is incorrect. For example, a trend toward 
larger residual errors at higher concentrations, Figure 5.13b, suggests that 
the indeterminate errors affecting the signal are not independent of the 
analyte’s concentration. In Figure 5.13c, the residual errors are not random, 
which suggests we cannot model the data using a straight-line relationship. 
Regression methods for the latter two cases are discussed in the following 
sections. 

Practice Exercise 5.4
Figure 5.3 shows a normal calibration curve for the quantitative analysis 
of Cu2+. The data for the calibration curve are shown here.

[Cu2+] (M) Absorbance
0 0
1.55×10–3 0.050

3.16×10–3 0.093

4.74×10–3 0.143

6.34×10–3 0.188

7.92×10–3 0.236

Complete a linear regression analysis for this calibration data, reporting 
the calibration equation and the 95% confidence interval for the slope 
and the y-intercept. If three replicate samples give an Ssamp of 0.114, what 
is the concentration of analyte in the sample and its 95% confidence 
interval?
Click here to review your answer to this exercise.
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5D.3 Weighted Linear Regression with Errors in y

Our treatment of linear regression to this point assumes that indeterminate 
errors affecting y are independent of the value of x. If this assumption is 
false, as is the case for the data in Figure 5.13b, then we must include the 
variance for each value of y into our determination of the y-intercept, bo, 
and the slope, b1; thus
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where wi is a weighting factor that accounts for the variance in yi
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and s yi  is the standard deviation for yi. In a weighted linear regression, 
each xy-pair’s contribution to the regression line is inversely proportional 
to the precision of yi; that is, the more precise the value of y, the greater its 
contribution to the regression.

Figure 5.13 Plots of the residual error in the signal, Sstd, as a function of the concentration of analyte, Cstd, for an 
unweighted straight-line regression model. The red line shows a residual error of zero. The distribution of the residual 
errors in (a) indicates that the unweighted linear regression model is appropriate. The increase in the residual errors in 
(b) for higher concentrations of analyte, suggests that a weighted straight-line regression is more appropriate. For (c), 
the curved pattern to the residuals suggests that a straight-line model is inappropriate; linear regression using a quadratic 
model might produce a better fit.
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Practice Exercise 5.5
Using your results from Practice Exercise 5.4, construct a residual plot 
and explain its significance.
Click here to review your answer to this exercise. 
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Example 5.12
Shown here are data for an external standardization in which sstd is the 
standard deviation for three replicate determination of the signal.

Cstd (arbitrary units) Sstd (arbitrary units) sstd
0.000 0.00 0.02
0.100 12.36 0.02
0.200 24.83 0.07
0.300 35.91 0.13
0.400 48.79 0.22
0.500 60.42 0.33

Determine the calibration curve’s equation using a weighted linear regres-
sion.

SOLUTION

We begin by setting up a table to aid in calculating the weighting factors.

xi yi syi sy
2

i

-^ h wi

0.000 0.00 0.02 2500.00 2.8339
0.100 12.36 0.02 2500.00 2.8339
0.200 24.83 0.07 204.08 0.2313
0.300 35.91 0.13 59.17 0.0671
0.400 48.79 0.22 20.66 0.0234
0.500 60.42 0.33 9.18 0.0104

Adding together the values in the forth column gives

s y
i

n
2

1
i
-

=

^ h/
which we use to calculate the individual weights in the last column. After 
we calculate the individual weights, we use a second table to aid in calculat-
ing the four summation terms in equation 5.26 and equation 5.27.

xi yi wi wi xi wi yi wi xi
2 wi xi yi

0.000 0.00 2.8339 0.0000 0.0000 0.0000 0.0000
0.100 12.36 2.8339 0.2834 35.0270 0.0283 3.5027
0.200 24.83 0.2313 0.0463 5.7432 0.0093 1.1486
0.300 35.91 0.0671 0.0201 2.4096 0.0060 0.7229
0.400 48.79 0.0234 0.0094 1.1417 0.0037 0.4567
0.500 60.42 0.0104 0.0052 0.6284 0.0026 0.3142

Adding the values in the last four columns gives

This is the same data used in Example 5.9 
with additional information about the 
standard deviations in the signal.

As you work through this example, re-
member that x corresponds to Cstd, and 
that y corresponds to Sstd. 

As a check on your calculations, the sum 
of the individual weights must equal the 
number of calibration standards, n. The 
sum of the entries in the last column is 
6.0000, so all is well.
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Substituting these values into the equation 5.26 and equation 5.27 gives 
the estimated slope and estimated y-intercept as

( . ) ( . )
( . ) ( . . ) .b 6 0 0499 0 3644
6 6 1451 0 3644 44 9499 122 9851 2#
# #

=
-

-
=

. ( . . ) .b 6
44 9499 122 985 0 3644 0 02240

#
=

-
=

The calibration equation is

. .S C122 98 0 02std std#= +

Figure 5.14 shows the calibration curve for the weighted regression and the 
calibration curve for the unweighted regression in Example 5.9. Although 
the two calibration curves are very similar, there are slight differences in the 
slope and in the y-intercept. Most notably, the y-intercept for the weighted 
linear regression is closer to the expected value of zero. Because the stan-
dard deviation for the signal, Sstd, is smaller for smaller concentrations of 
analyte, Cstd, a weighted linear regression gives more emphasis to these 
standards, allowing for a better estimate of the y-intercept.

Figure 5.14 A comparison of the unweighted and the weighted normal calibra-
tion curves. See Example 5.9 for details of the unweighted linear regression and 
Example 5.12 for details of the weighted linear regression.
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Equations for calculating confidence intervals for the slope, the y-in-
tercept, and the concentration of analyte when using a weighted linear 
regression are not as easy to define as for an unweighted linear regression.8 
The confidence interval for the analyte’s concentration, however, is at its 
optimum value when the analyte’s signal is near the weighted centroid, yc , 
of the calibration curve.

y n w x1
c i i

i

n

1
=

=

/

5D.4 Weighted Linear Regression with Errors in Both x and y

If we remove our assumption that indeterminate errors affecting a calibra-
tion curve are present only in the signal (y), then we also must factor into 
the regression model the indeterminate errors that affect the analyte’s con-
centration in the calibration standards (x). The solution for the resulting 
regression line is computationally more involved than that for either the 
unweighted or weighted regression lines.9 Although we will not consider 
the details in this textbook, you should be aware that neglecting the pres-
ence of indeterminate errors in x can bias the results of a linear regression. 

5D.5 Curvilinear and Multivariate Regression

A straight-line regression model, despite its apparent complexity, is the 
simplest functional relationship between two variables. What do we do if 
our calibration curve is curvilinear—that is, if it is a curved-line instead of 
a straight-line? One approach is to try transforming the data into a straight-
line. Logarithms, exponentials, reciprocals, square roots, and trigonometric 
functions have been used in this way. A plot of log(y) versus x is a typical 
example. Such transformations are not without complications, of which 
the most obvious is that data with a uniform variance in y will not maintain 
that uniform variance after it is transformed.

Another approach to developing a linear regression model is to fit a 
polynomial equation to the data, such as y = a + bx + cx2. You can use 
linear regression to calculate the parameters a, b, and c, although the equa-
tions are different than those for the linear regression of a straight-line.10 
If you cannot fit your data using a single polynomial equation, it may be 
possible to fit separate polynomial equations to short segments of the cali-
bration curve. The result is a single continuous calibration curve known as 
a spline function.

8 Bonate, P. J. Anal. Chem. 1993, 65, 1367–1372.
9 See, for example, Analytical Methods Committee, “Fitting a linear functional relationship to 

data with error on both variable,” AMC Technical Brief, March, 2002), as well as this chapter’s 
Additional Resources.

10 For details about curvilinear regression, see (a) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. 
Chemometrics, Wiley-Interscience: New York, 1986; (b) Deming, S. N.; Morgan, S. L. Experi-
mental Design: A Chemometric Approach, Elsevier: Amsterdam, 1987.

See Figure 5.2 for an example of a calibra-
tion curve that deviates from a straight-
line for higher concentrations of analyte.

It is worth noting that the term “linear” 
does not mean a straight-line. A linear 
function may contain more than one ad-
ditive term, but each such term has one 
and only one adjustable multiplicative 
parameter. The function

y = ax + bx2

is an example of a linear function because 
the terms x and x2 each include a single 
multiplicative parameter, a and b, respec-
tively. The function

y = xb

is nonlinear because b is not a multiplica-
tive parameter; it is, instead, a power. This 
is why you can use linear regression to fit a 
polynomial equation to your data. 
Sometimes it is possible to transform a 
nonlinear function into a linear function. 
For example, taking the log of both sides 
of the nonlinear function above gives a 
linear function.

log(y) = blog(x)
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The regression models in this chapter apply only to functions that con-
tain a single independent variable, such as a signal that depends upon the 
analyte’s concentration. In the presence of an interferent, however, the signal 
may depend on the concentrations of both the analyte and the interferent

S k C k C SA A I I reag= + +

where kI is the interferent’s sensitivity and CI is the interferent’s concentra-
tion. Multivariate calibration curves are prepared using standards that con-
tain known amounts of both the analyte and the interferent, and modeled 
using multivariate regression.11

5E Compensating for the Reagent Blank (Sreag)
Thus far in our discussion of strategies for standardizing analytical methods, 
we have assumed that a suitable reagent blank is available to correct for sig-
nals arising from sources other than the analyte. We did not, however ask 
an important question: “What constitutes an appropriate reagent blank?” 
Surprisingly, the answer is not immediately obvious.

In one study, approximately 200 analytical chemists were asked to 
evaluate a data set consisting of a normal calibration curve, a separate ana-
lyte-free blank, and three samples with different sizes, but drawn from the 
same source.12 The first two columns in Table 5.3 shows a series of external 
standards and their corresponding signals. The normal calibration curve 
for the data is

Sstd = 0.0750 × Wstd + 0.1250

where the y-intercept of 0.1250 is the calibration blank. A separate reagent 
blank gives the signal for an analyte-free sample.

11 Beebe, K. R.; Kowalski, B. R. Anal. Chem. 1987, 59, 1007A–1017A.
12 Cardone, M. J. Anal. Chem. 1986, 58, 433–438.

Check out this chapter’s Additional Re-
sources at the end of the textbook for 
more information about linear regression 
with errors in both variables, curvilinear 
regression, and multivariate regression.

Table 5.3 Data Used to Study the Blank in an Analytical Method
Wstd Sstd Sample Number Wsamp Ssamp

1.6667 0.2500 1 62.4746 0.8000
5.0000 0.5000 2 82.7915 1.0000
8.3333 0.7500 3 103.1085 1.2000

11.6667 0.8413
18.1600 1.4870 reagent blank 0.1000
19.9333 1.6200

Calibration equation: Sstd = 0.0750 × Wstd + 0.1250
Wstd: weight of analyte used to prepare the external standard; diluted to volume, V.
Wsamp: weight of sample used to prepare sample; diluted to volume, V.
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In working up this data, the analytical chemists used at least four dif-
ferent approaches to correct the signals: (a) ignoring both the calibration 
blank, CB, and the reagent blank, RB, which clearly is incorrect; (b) using 
the calibration blank only; (c) using the reagent blank only; and (d) using 
both the calibration blank and the reagent blank. The first four rows of 
Table 5.4 shows the equations for calculating the analyte’s concentration 
using each approach, along with the reported concentrations for the analyte 
in each sample.

That all four methods give a different result for the analyte’s concentra-
tion underscores the importance of choosing a proper blank, but does not 
tell us which blank is correct. Because all four methods fail to predict the 
same concentration of analyte for each sample, none of these blank correc-
tions properly accounts for an underlying constant source of determinate 
error.

To correct for a constant method error, a blank must account for sig-
nals from any reagents and solvents used in the analysis and any bias that 
results from interactions between the analyte and the sample’s matrix. Both 
the calibration blank and the reagent blank compensate for signals from 
reagents and solvents. Any difference in their values is due to indeterminate 
errors in preparing and analyzing the standards.

Unfortunately, neither a calibration blank nor a reagent blank can cor-
rect for a bias that results from an interaction between the analyte and the 
sample’s matrix. To be effective, the blank must include both the sample’s 
matrix and the analyte and, consequently, it must be determined using the 
sample itself. One approach is to measure the signal for samples of differ-

Table 5.4 Equations and Resulting Concentrations of Analyte for Different Approaches 
to Correcting for the Blank

Concentration of Analyte in...
Approach for Correcting  The Signal Equation Sample 1 Sample 2 Sample 3

ignore calibration and reagent blank C W
W

k W
S

A
samp

A

A samp

samp
= = 0.1707 0.1610 0.1552

use calibration blank only C W
W

k W
S CB

A
samp

A

A samp

samp
= =

-
0.1441 0.1409 0.1390

use reagent blank only C W
W

k W
S RB

A
samp

A

A samp

samp
= =

-
0.1494 0.1449 0.1422

use both calibration and reagent blank C W
W

k W
S CB RB

A
samp

A

A samp

samp
= =

- -
0.1227 0.1248 0.1261

use total Youden blank C W
W

k W
S TYB

A
samp

A

A samp

samp
= =

-
0.1313 0.1313 0.1313

CA = concentration of analyte; WA = weight of analyte; Wsamp = weight of sample; kA = slope of calibration curve (0.075; see Table 
5.3); CB = calibration blank (0.125; see Table 5.3); RB = reagent blank (0.100; see Table 5.3); TYB = total Youden blank (0.185; see 
text)

Because we are considering a matrix effect 
of sorts, you might think that the method 
of standard additions is one way to over-
come this problem. Although the method 
of standard additions can compensate for 
proportional determinate errors, it cannot 
correct for a constant determinate error; 
see Ellison, S. L. R.; Thompson, M. T. 
“Standard additions: myth and reality,” 
Analyst, 2008, 133, 992–997. 
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ent size, and to determine the regression line for a plot of Ssamp versus the 
amount of sample. The resulting y-intercept gives the signal in the absence 
of sample, and is known as the total Youden blank.13 This is the true 
blank correction. The regression line for the three samples in Table 5.3 is

Ssamp = 0.009844 × Wsamp + 0.185

giving a true blank correction of 0.185. As shown by the last row of Table 
5.4, using this value to correct Ssamp gives identical values for the concentra-
tion of analyte in all three samples.

The use of the total Youden blank is not common in analytical work, 
with most chemists relying on a calibration blank when using a calibra-
tion curve and a reagent blank when using a single-point standardization. 
As long we can ignore any constant bias due to interactions between the 
analyte and the sample’s matrix, which is often the case, the accuracy of an 
analytical method will not suffer. It is a good idea, however, to check for 
constant sources of error before relying on either a calibration blank or a 
reagent blank.

5F Using Excel and R for a Regression Analysis
Although the calculations in this chapter are relatively straightforward—
consisting, as they do, mostly of summations—it is tedious to work through 
problems using nothing more than a calculator. Both Excel and R include 
functions for completing a linear regression analysis and for visually evalu-
ating the resulting model.

5F.1 Excel

Let’s use Excel to fit the following straight-line model to the data in Ex-
ample 5.9. 

y x0 1b b= +

Enter the data into a spreadsheet, as shown in Figure 5.15. Depending 
upon your needs, there are many ways that you can use Excel to complete 
a linear regression analysis. We will consider three approaches here.

USE EXCEL’S BUILT-IN FUNCTIONS

If all you need are values for the slope, b1, and the y-intercept, b0, you can 
use the following functions:

= intercept(known_y’s, known_x’s)

= slope(known_y’s, known_x’s)

13 Cardone, M. J. Anal. Chem. 1986, 58, 438–445.

Figure 5.15 Portion of a spread-
sheet containing data from Exam-
ple 5.9 (Cstd = Cstd; Sstd = Sstd).

A B
1 Cstd Sstd
2 0.000 0.00
3 0.100 12.36
4 0.200 24.83
5 0.300 35.91
6 0.400 48.79
7 0.500 60.42
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where known_y’s is the range of cells that contain the signals (y), and 
known_x’s is the range of cells that contain the concentrations (x). For ex-
ample, if you click on an empty cell and enter

= slope(B2:B7, A2:A7)

Excel returns exact calculation for the slope (120.705 714 3).

USE EXCEL’S DATA ANALYSIS TOOLS

To obtain the slope and the y-intercept, along with additional statistical 
details, you can use the data analysis tools in the Data Analysis ToolPak. 
The ToolPak is not a standard part of Excel’s instillation. To see if you have 
access to the Analysis ToolPak on your computer, select Tools from the 
menu bar and look for the Data Analysis... option. If you do not see Data 
Analysis..., select Add-ins... from the Tools menu. Check the box for the 
Analysis ToolPak and click on OK to install them. 

Select Data Analysis... from the Tools menu, which opens the Data 
Analysis window. Scroll through the window, select Regression from the 
available options, and press OK. Place the cursor in the box for Input Y 
range and then click and drag over cells B1:B7. Place the cursor in the box 
for Input X range and click and drag over cells A1:A7. Because cells A1 and 
B1 contain labels, check the box for Labels. Select the radio button for 
Output range and click on any empty cell; this is where Excel will place the 
results. Clicking OK generates the information shown in Figure 5.16.

There are three parts to Excel’s summary of a regression analysis. At the 
top of Figure 5.16 is a table of Regression Statistics. The standard error is the 
standard deviation about the regression, sr. Also of interest is the value for 
Multiple R, which is the model’s correlation coefficient, r, a term with which 
you may already be familiar. The correlation coefficient is a measure of the 
extent to which the regression model explains the variation in y. Values of r 

Excel’s Data Analysis Toolpak is available 
for Windows. Older versions of Excel 
for Mac included the toolpak; however, 
beginning with Excel for Mac 2011, the 
toolpak no longer is available.

Once you install the Analysis ToolPak, it 
will continue to load each time you launch 
Excel.

Including labels is a good idea. Excel’s 
summary output uses the x-axis label to 
identify the slope. 

Figure 5.16 Output from Excel’s Regression command in the Analysis ToolPak. See the text for a discussion of how to 
interpret the information in these tables.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99987244
R Square 0.9997449
Adjusted R Square 0.99968113
Standard Error 0.40329713
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 2549.727156 2549.72716 15676.296 2.4405E-08
Residual 4 0.650594286 0.16264857
Total 5 2550.37775

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.20857143 0.29188503 0.71456706 0.51436267 -0.60183133 1.01897419 -0.60183133 1.01897419
Cstd 120.705714 0.964064525 125.205016 2.4405E-08 118.029042 123.382387 118.029042 123.382387
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range from –1 to +1. The closer the correlation coefficient is to ±1, the bet-
ter the model is at explaining the data. A correlation coefficient of 0 means 
there is no relationship between x and y. In developing the calculations for 
linear regression, we did not consider the correlation coefficient. There is 
a reason for this. For most straight-line calibration curves the correlation 
coefficient is very close to +1, typically 0.99 or better. There is a tendency, 
however, to put too much faith in the correlation coefficient’s significance, 
and to assume that an r greater than 0.99 means the linear regression model 
is appropriate. Figure 5.17 provides a useful counterexample. Although 
the regression line has a correlation coefficient of 0.993, the data clearly is 
curvilinear. The take-home lesson here is simple: do not fall in love with 
the correlation coefficient!

The second table in Figure 5.16 is entitled ANOVA, which stands for 
analysis of variance. We will take a closer look at ANOVA in Chapter 14. 
For now, it is sufficient to understand that this part of Excel’s summary 
provides information on whether the linear regression model explains a 
significant portion of the variation in the values of y. The value for F is the 
result of an F-test of the following null and alternative hypotheses.

H0: the regression model does not explain the variation in y

HA: the regression model does explain the variation in y

The value in the column for Significance F is the probability for retaining 
the null hypothesis. In this example, the probability is 2.5×10–6%, which 
is strong evidence for accepting the regression model. As is the case with 
the correlation coefficient, a small value for the probability is a likely out-
come for any calibration curve, even when the model is inappropriate. The 
probability for retaining the null hypothesis for the data in Figure 5.17, for 
example, is 9.0×10–7%.

The third table in Figure 5.16 provides a summary of the model itself. 
The values for the model’s coefficients—the slope, b1, and the y-intercept, 
b0—are identified as intercept and with your label for the x-axis data, which 
in this example is Cstd. The standard deviations for the coefficients, sb0 and 
sb1, are in the column labeled Standard error. The column t Stat and the 
column P-value are for the following t-tests.

slope H0: b1 = 0, HA: b1 ≠ 0

y-intercept H0: b0 = 0, HA: b0 ≠ 0

The results of these t-tests provide convincing evidence that the slope is not 
zero, but there is no evidence that the y-intercept differs significantly from 
zero. Also shown are the 95% confidence intervals for the slope and the 
y-intercept (lower 95% and upper 95%).

Figure 5.17 Example of fitting a 
straight-line (in red) to curvilinear 
data (in blue).
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See Section 4F.2 and Section 4F.3 for a 
review of the F-test.

See Section 4F.1 for a review of the t-test.



183Chapter 5 Standardizing Analytical Methods

PROGRAM THE FORMULAS YOURSELF

A third approach to completing a regression analysis is to program a spread-
sheet using Excel’s built-in formula for a summation 

=sum(first cell:last cell)
and its ability to parse mathematical equations. The resulting spreadsheet 
is shown in Figure 5.18.

USING EXCEL TO VISUALIZE THE REGRESSION MODEL

You can use Excel to examine your data and the regression line. Begin by 
plotting the data. Organize your data in two columns, placing the x values 
in the left-most column. Click and drag over the data and select Charts 
from the ribbon. Select Scatter, choosing the option without lines that 
connect the points. To add a regression line to the chart, click on the chart’s 
data and select Chart: Add Trendline... from the main men. Pick the 
straight-line model and click OK to add the line to your chart. By default, 
Excel displays the regression line from your first point to your last point. 
Figure 5.19 shows the result for the data in Figure 5.15.

Excel also will create a plot of the regression model’s residual errors. To 
create the plot, build the regression model using the Analysis ToolPak, as 
described earlier. Clicking on the option for Residual plots creates the plot 
shown in Figure 5.20.

LIMITATIONS TO USING EXCEL FOR A REGRESSION ANALYSIS

Excel’s biggest limitation for a regression analysis is that it does not provide 
a function to calculate the uncertainty when predicting values of x. In terms 
of this chapter, Excel can not calculate the uncertainty for the analyte’s 

Figure 5.18 Spreadsheet showing the formulas for calculating the slope and the y-intercept for the data in Example 5.9. 
The shaded cells contain formulas that you must enter. Enter the formulas in cells C3 to C7, and cells D3 to D7. Next, 
enter the formulas for cells A9 to D9. Finally, enter the formulas in cells F2 and F3. When you enter a formula, Excel 
replaces it with the resulting calculation. The values in these cells should agree with the results in Example 5.9. You can 
simplify the entering of formulas by copying and pasting. For example, enter the formula in cell C2. Select Edit: Copy, 
click and drag your cursor over cells C3 to C7, and select Edit: Paste. Excel automatically updates the cell referencing.

A B C D E F
1 x y xy x^2 n = 6
2 0.000 0.00 =A2*B2 =A2^2 slope = =(F1*C8 - A8*B8)/(F1*D8-A8^2)
3 0.100 12.36 =A3*B3 =A3^2 y-int = =(B8-F2*A8)/F1
4 0.200 24.83 =A4*B4 =A4^2
5 0.300 35.91 =A5*B5 =A5^2
6 0.400 48.79 =A6*B6 =A6^2
7 0.500 60.42 =A7*B7 =A7^2
8
9 =sum(A2:A7) =sum(B2:B7) =sum(C2:C7) =sum(D2:D7) <--sums
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concentration, CA, given the signal for a sample, Ssamp. Another limitation 
is that Excel does not have a built-in function for a weighted linear regres-
sion. You can, however, program a spreadsheet to handle these calculations.

5F.2 R

Let’s use R to fit the following straight-line model to the data in Example 
5.9. 

y x0 1b b= +

ENTERING DATA AND CREATING THE REGRESSION MODEL

To begin, create objects that contain the concentration of the standards and 
their corresponding signals.

> conc = c(0, 0.1, 0.2, 0.3, 0.4, 0.5)
> signal = c(0, 12.36, 24.83, 35.91, 48.79, 60.42)

Figure 5.19 Example of an Excel scatterplot showing 
the data and a regression line. 
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Figure 5.20 Example of Excel’s plot of a re-
gression model’s residual errors.

Practice Exercise 5.6
Use Excel to complete the 
regression analysis in Practice 
Exercise 5.4.
Click here to review your an-
swer to this exercise.
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The command for a straight-line linear regression model is

lm(y ~ x)

where y and x are the objects the objects our data. To access the results of 
the regression analysis, we assign them to an object using the following 
command

> model = lm(signal ~ conc)
where model is the name we assign to the object. 

EVALUATING THE LINEAR REGRESSION MODEL

To evaluate the results of a linear regression we need to examine the data 
and the regression line, and to review a statistical summary of the model. To 
examine our data and the regression line, we use the plot command, which 
takes the following general form

plot(x, y, optional arguments to control style)

where x and y are the objects that contain our data, and the abline com-
mand

abline(object, optional arguments to control style)

where object is the object that contains the results of the linear regression. 
Entering the commands

> plot(conc, signal, pch = 19, col = “blue”, cex = 2)
> abline(model, col = “red”)

creates the plot shown in Figure 5.21. 
To review a statistical summary of the regression model, we use the 

summary command.
> summary(model)

As you might guess, lm is short for linear 
model.

You can choose any name for the object 
that contains the results of the regression 
analysis.

The name abline comes from the follow-
ing common form for writing the equa-
tion of a straight-line.

y = a + bx
where a is the y-intercept and b is the 
slope.

Figure 5.21 Example of a regression plot in R showing the data (in 
blue)and the regression line (in red). You can customize your plot 
by adjusting the plot command’s optional arguments. For example, 
the argument pch controls the symbol used for plotting points, the 
argument col allows you to select a color for the points or the line, 
and the argument cex sets the size for the points. You can use the 
command 

help(plot) 
to learn more about the options for plotting data in R.
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The resulting output, shown in Figure 5.22, contains three sections. 
The first section of R’s summary of the regression model lists the re-

sidual errors. To examine a plot of the residual errors, use the command
> plot(model, which = 1)

which produces the result shown in Figure 5.23. Note that R plots the re-
siduals against the predicted (fitted) values of y instead of against the known 
values of x. The choice of how to plot the residuals is not critical, as you can 
see by comparing Figure 5.23 to Figure 5.20. The line in Figure 5.23 is a 
smoothed fit of the residuals. 

The second section of Figure 5.22 provides the model’s coefficients—
the slope, b1, and the y-intercept, b0—along with their respective standard 
deviations (Std. Error). The column t value and the column Pr(>|t|) are for 
the following t-tests.

The reason for including the argument 
which =  1 is not immediately obvious. 
When you use R’s plot command on an 
object created by the lm command, the 
default is to create four charts summa-
rizing the model’s suitability. The first 
of these charts is the residual plot; thus, 
which = 1 limits the output to this plot.

Figure 5.22 The summary of R’s regression analysis. See the 
text for a discussion of how to interpret the information in the 
output’s three sections.

> model=lm(signal~conc)
> summary(model)

Call:
lm(formula = signal ~ conc)

Residuals:
       1                 2         3           4                5               6 
-0.20857  0.08086  0.48029 -0.51029  0.29914 -0.14143 

Coefficients:
                   Estimate       Std. Error      t value       Pr(>|t|)    
(Intercept)   0.2086        0.2919          0.715          0.514    
conc        120.7057         0.9641      125.205         2.44e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.4033 on 4 degrees of freedom
Multiple R-Squared: 0.9997, Adjusted R-squared: 0.9997 
F-statistic: 1.568e+04 on 1 and 4 DF,  p-value: 2.441e-08 

Figure 5.23 Example showing R’s plot of a regression model’s 
residual error. 0 10 20 30 40 50 60
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slope H0: b1 = 0, HA: b1 ≠ 0

y-intercept H0: b0 = 0, HA: b0 ≠ 0

The results of these t-tests provide convincing evidence that the slope is not 
zero, but no evidence that the y-intercept differs significantly from zero.

The last section of the regression summary provides the standard devia-
tion about the regression (residual standard error), the square of the cor-
relation coefficient (multiple R-squared), and the result of an F-test on the 
model’s ability to explain the variation in the y values. For a discussion of 
the correlation coefficient and the F-test of a regression model, as well as 
their limitations, refer to the section on using Excel’s data analysis tools.

PREDICTING THE UNCERTAINTY IN CA GIVEN SSAMP

Unlike Excel, R includes a command for predicting the uncertainty in an 
analyte’s concentration, CA, given the signal for a sample, Ssamp. This com-
mand is not part of R’s standard installation. To use the command you need 
to install the “chemCal” package by entering the following command (note: 
you will need an internet connection to download the package).

> install.packages(“chemCal”)
After installing the package, you need to load the functions into R using the 
following command. (note: you will need to do this step each time you begin 
a new R session as the package does not automatically load when you start R).

> library(“chemCal”)
The command for predicting the uncertainty in CA is inverse.predict, 

which takes the following form for an unweighted linear regression

inverse.predict(object, newdata, alpha = value)

where object is the object that contains the regression model’s results, new-
data is an object that contains values for Ssamp, and value is the numerical 
value for the significance level. Let’s use this command to complete Ex-
ample 5.11. First, we create an object that contains the values of Ssamp

> sample = c(29.32, 29.16, 29.51)
and then we complete the computation using the following command

> inverse.predict(model, sample, alpha = 0.05)
 producing the result shown in Figure 5.24. The analyte’s concentration, CA, 
is given by the value $Prediction, and its standard deviation, sCA, is shown 
as $`Standard Error`. The value for $Confidence is the confidence interval, 
±tsCA, for the analyte’s concentration, and $`Confidence Limits` provides 
the lower limit and upper limit for the confidence interval for CA.

See Section 4F.1 for a review of the t-test.

See Section 4F.2 and Section 4F.3 for a 
review of the F-test.

You need to install a package once, but 
you need to load the package each time 
you plan to use it. There are ways to con-
figure R so that it automatically loads 
certain packages; see An Introduction to R 
for more information (click here to view a 
PDF version of this document). 
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USING R FOR A WEIGHTED LINEAR REGRESSION

R’s command for an unweighted linear regression also allows for a weighted 
linear regression if we include an additional argument, weights, whose value 
is an object that contains the weights.

lm(y ~ x, weights  = object)

Let’s use this command to complete Example 5.12. First, we need to create 
an object that contains the weights, which in R are the reciprocals of the 
standard deviations in y, (syi)

–2. Using the data from Example 5.12, we enter
> syi=c(0.02, 0.02, 0.07, 0.13, 0.22, 0.33)
> w=1/syi^2

to create the object that contains the weights. The commands
> modelw = lm(signal ~ conc, weights = w)

> summary(modelw)
generate the output shown in Figure 5.25. Any difference between the 
results shown here and the results shown in Example 5.12 are the result of 
round-off errors in our earlier calculations.

Figure 5.24 Output from R’s command for predicting the ana-
lyte’s concentration, CA, from the sample’s signal, Ssamp.

> inverse.predict(model, sample, alpha = 0.05)
$Prediction
[1] 0.2412597

$`Standard Error`
[1] 0.002363588

$Confidence
[1] 0.006562373

$`Confidence Limits`
[1] 0.2346974 0.2478221

You may have noticed that this way of 
defining weights is different than that 
shown in equation 5.28. In deriving equa-
tions for a weighted linear regression, you 
can choose to normalize the sum of the 
weights to equal the number of points, or 
you can choose not to—the algorithm in 
R does not normalize the weights.

Practice Exercise 5.7
Use Excel to complete the regression analysis in Practice Exercise 5.4.
Click here to review your answer to this exercise.



189Chapter 5 Standardizing Analytical Methods

5G Key Terms
calibration curve external standard internal standard

linear regression matrix matching method of standard 
additions

multiple-point 
standardization normal calibration curve primary standard

reagent grade residual error secondary standard

serial dilution single-point 
standardization

standard deviation about 
the regression

total Youden blank unweighted linear 
regression weighted linear regression

5H Chapter Summary
In a quantitative analysis we measure a signal, Stotal, and calculate the 
amount of analyte, nA or CA, using one of the following equations.

S k n Stotal A A reag= +

S k C Stotal A A reag= +

To obtain an accurate result we must eliminate determinate errors that af-
fect the signal, Stotal, the method’s sensitivity, kA, and the signal due to the 
reagents, Sreag. 

To ensure that we accurately measure Stotal, we calibrate our equipment 
and instruments. To calibrate a balance, for example, we use a standard 
weight of known mass. The manufacturer of an instrument usually suggests 
appropriate calibration standards and calibration methods.

To standardize an analytical method we determine its sensitivity. There 
are several standardization strategies available to us, including external 
standards, the method of standard addition, and internal standards. The 

Figure 5.25 The summary of R’s regression analysis for 
a weighted linear regression. The types of information 
shown here is identical to that for the unweighted linear 
regression in Figure 5.22. 

> modelw=lm(signal~conc, weights = w)
> summary(modelw)

Call:
lm(formula = signal ~ conc, weights = w)

Residuals:
     1           2           3           4            5           6 
-2.223  2.571  3.676  -7.129  -1.413  -2.864 

Coefficients:
                      Estimate       Std. Error    t value   Pr(>|t|)    
(Intercept)   0.04446         0.08542        0.52       0.63    
conc         122.64111         0.93590    131.04       2.03e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 4.639 on 4 degrees of freedom
Multiple R-Squared: 0.9998, Adjusted R-squared: 0.9997 
F-statistic: 1.717e+04 on 1 and 4 DF,  p-value: 2.034e-08 
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most common strategy is a multiple-point external standardization and 
a normal calibration curve. We use the method of standard additions, in 
which we add known amounts of analyte to the sample, when the sample’s 
matrix complicates the analysis. When it is difficult to reproducibly handle 
samples and standards, we may choose to add an internal standard. 

Single-point standardizations are common, but are subject to greater 
uncertainty. Whenever possible, a multiple-point standardization is pre-
ferred, with results displayed as a calibration curve. A linear regression 
analysis provides an equation for the standardization. 

A reagent blank corrects for any contribution to the signal from the 
reagents used in the analysis. The most common reagent blank is one in 
which an analyte-free sample is taken through the analysis. When a simple 
reagent blank does not compensate for all constant sources of determinate 
error, other types of blanks, such as the total Youden blank, are used.

5I Problems

1. Suppose you use a serial dilution to prepare 100 mL each of a series of 
standards with concentrations of 1.00×10–5, 1.00×10–4, 1.00×10–3, 
and 1.00×10–2 M from a 0.100 M stock solution. Calculate the uncer-
tainty for each solution using a propagation of uncertainty, and com-
pare to the uncertainty if you prepare each solution as a single dilution 
of the stock solution. You will find tolerances for different types of 
volumetric glassware and digital pipets in Table 4.2 and Table 4.3. As-
sume that the uncertainty in the stock solution’s molarity is ±0.0002.

2. Three replicate determinations of Stotal for a standard solution that is 
10.0 ppm in analyte give values of 0.163, 0.157, and 0.161 (arbitrary 
units). The signal for the reagent blank is 0.002. Calculate the concen-
tration of analyte in a sample with a signal of 0.118.

3. A 10.00-g sample that contains an analyte is transferred to a 250-mL 
volumetric flask and diluted to volume. When a 10.00 mL aliquot of 
the resulting solution is diluted to 25.00 mL it gives a signal of 0.235 
(arbitrary units). A second 10.00-mL portion of the solution is spiked 
with 10.00 mL of a 1.00-ppm standard solution of the analyte and di-
luted to 25.00 mL. The signal for the spiked sample is 0.502. Calculate 
the weight percent of analyte in the original sample.

4. A 50.00 mL sample that contains an analyte gives a signal of 11.5 (arbi-
trary units). A second 50 mL aliquot of the sample, which is spiked with 
1.00 mL of a 10.0-ppm standard solution of the analyte, gives a signal 
of 23.1. What is the analyte’s concentration in the original sample?
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5. A standard additions calibration curve based on equation 5.10 places 
Sspike×(Vo + Vstd) on the y-axis and Cstd × Vstd on the x-axis. Derive 
equations for the slope and the y-intercept and explain how you can 
determine the amount of analyte in a sample from the calibration curve. 
In addition, clearly explain why you cannot plot Sspike on the y-axis and 

/ ( )C V V Vstd std o std# +" ,  on the x-axis.

6. A standard sample contains 10.0 mg/L of analyte and 15.0 mg/L of in-
ternal standard. Analysis of the sample gives signals for the analyte and 
the internal standard of 0.155 and 0.233 (arbitrary units), respectively. 
Sufficient internal standard is added to a sample to make its concentra-
tion 15.0 mg/L. Analysis of the sample yields signals for the analyte 
and the internal standard of 0.274 and 0.198, respectively. Report the 
analyte’s concentration in the sample.

7. For each of the pair of calibration curves shown in Figure 5.26, select 
the calibration curve that uses the more appropriate set of standards. 
Briefly explain the reasons for your selections. The scales for the x-axis 
and the y-axis are the same for each pair.
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Figure 5.26 Calibration curves to accom-
pany Problem 7.
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8. The following data are for a series of external standards of Cd2+ buffered 
to a pH of 4.6.14

[Cd2+] (nM) 15.4 30.4 44.9 59.0 72.7 86.0
Sspike (nA) 4.8 11.4 18.2 26.6 32.3 37.7

(a) Use a linear regression analysis to determine the equation for the 
calibration curve and report confidence intervals for the slope and 
the y-intercept. 

(b) Construct a plot of the residuals and comment on their significance.

At a pH of 3.7 the following data were recorded for the same set of 
external standards.

[Cd2+] (nM) 15.4 30.4 44.9 59.0 72.7 86.0

Sspike (nA) 15.0 42.7 58.5 77.0 101 118

(c) How much more or less sensitive is this method at the lower pH? 

(d) A single sample is buffered to a pH of 3.7 and analyzed for cadmium, 
yielding a signal of 66.3 nA. Report the concentration of Cd2+ in 
the sample and its 95% confidence interval.

9. To determine the concentration of analyte in a sample, a standard ad-
dition is performed. A 5.00-mL portion of sample is analyzed and then 
successive 0.10-mL spikes of a 600.0 ppb standard of the analyte are 
added, analyzing after each spike. The following table shows the results 
of this analysis.

Vspike (mL) 0.00 0.10 0.20 0.30
Stotal (arbitrary units) 0.119 0.231 0.339 0.442

 Construct an appropriate standard additions calibration curve and use 
a linear regression analysis to determine the concentration of analyte in 
the original sample and its 95% confidence interval.

10. Troost and Olavsesn investigated the application of an internal stan-
dardization to the quantitative analysis of polynuclear aromatic hy-
drocarbons.15 The following results were obtained for the analysis of 
phenanthrene using isotopically labeled phenanthrene as an internal 
standard. Each solution was analyzed twice.

CA/CIS 0.50 1.25 2.00 3.00 4.00

SA/SIS
0.514
0.522

0.993
1.024

1.486
1.471

2.044
2.080

2.342
2.550

14 Wojciechowski, M.; Balcerzak, J. Anal. Chim. Acta 1991, 249, 433–445.
15 Troost, J. R.; Olavesen, E. Y. Anal. Chem. 1996, 68, 708–711.
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(a) Determine the equation for the calibration curve using a linear 
regression, and report confidence intervals for the slope and the y-
intercept. Average the replicate signals for each standard before you 
complete the linear regression analysis.

(b) Based on your results explain why the authors concluded that the 
internal standardization was inappropriate.

11. In Chapter 4 we used a paired t-test to compare two analytical methods 
that were used to analyze independently a series of samples of vari-
able composition. An alternative approach is to plot the results for one 
method versus the results for the other method. If the two methods 
yield identical results, then the plot should have an expected slope, b1, 
of 1.00 and an expected y-intercept, b0, of 0.0. We can use a t-test to 
compare the slope and the y-intercept from a linear regression to the ex-
pected values. The appropriate test statistic for the y-intercept is found 
by rearranging equation 5.23.  

t s
b

s
b

exp
b b

0 0 0

0 0

b
=

-
=

 Rearranging equation 5.22 gives the test statistic for the slope.

t s
b

s
b1

exp
b b

1 1 1

1 1

b
=

-
=

-

 Reevaluate the data in problem 25 from Chapter 4 using the same 
significance level as in the original problem.

12. Consider the following three data sets, each of which gives values of y 
for the same values of x.

Data Set 1 Data Set 2 Data Set 3
x y1 y2 y3

10.00 8.04 9.14 7.46
8.00 6.95 8.14 6.77

13.00 7.58 8.74 12.74
9.00 8.81 8.77 7.11

11.00 8.33 9.26 7.81
14.00 9.96 8.10 8.84

6.00 7.24 6.13 6.08
4.00 4.26 3.10 5.39

12.00 10.84 9.13 8.15
7.00 4.82 7.26 6.42
5.00 5.68 4.74 5.73

Although this is a common approach for 
comparing two analytical methods, it 
does violate one of the requirements for 
an unweighted linear regression—that in-
determinate errors affect y only. Because 
indeterminate errors affect both analytical 
methods, the result of an unweighted lin-
ear regression is biased. More specifically, 
the regression underestimates the slope, 
b1, and overestimates the y-intercept, b0. 
We can minimize the effect of this bias by 
placing the more precise analytical meth-
od on the x-axis, by using more samples 
to increase the degrees of freedom, and 
by using samples that uniformly cover the 
range of concentrations. 
For more information, see Miller, J. C.; 
Miller, J. N. Statistics for Analytical Chem-
istry, 3rd ed. Ellis Horwood PTR Pren-
tice-Hall: New York, 1993. Alternative 
approaches are found in Hartman, C.; 
Smeyers-Verbeke, J.; Penninckx, W.; Mas-
sart, D. L. Anal. Chim. Acta 1997, 338, 
19–40, and Zwanziger, H. W.; Sârbu, C. 
Anal. Chem. 1998, 70, 1277–1280.

These three data sets are taken from Ans-
combe, F. J. “Graphs in Statistical Analy-
sis,” Amer. Statis. 1973, 27, 17-21. 
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(a)  An unweighted linear regression analysis for the three data sets gives 
nearly identical results. To three significant figures, each data set 
has a slope of 0.500 and a y-intercept of 3.00. The standard devia-
tions in the slope and the y-intercept are 0.118 and 1.125 for each 
data set. All three standard deviations about the regression are 1.24. 
Based on these results for a linear regression analysis, comment on 
the similarity of the data sets.

(b) Complete a linear regression analysis for each data set and verify 
that the results from part (a) are correct. Construct a residual plot 
for each data set. Do these plots change your conclusion from part 
(a)? Explain.

(c) Plot each data set along with the regression line and comment on 
your results.

(d) Data set 3 appears to contain an outlier. Remove the apparent out-
lier and reanalyze the data using a linear regression. Comment on 
your result.

(e) Briefly comment on the importance of visually examining your 
data.

13. Fanke and co-workers evaluated a standard additions method for a 
voltammetric determination of Tl.16 A summary of their results is tabu-
lated in the following table.

ppm Tl 
added Instrument Response (mA)

0.000 2.53 2.50 2.70 2.63 2.70 2.80 2.52
0.387 8.42 7.96 8.54 8.18 7.70 8.34 7.98
1.851 29.65 28.70 29.05 28.30 29.20 29.95 28.95
5.734 84.8 85.6 86.0 85.2 84.2 86.4 87.8

 Use a weighted linear regression to determine the standardization rela-
tionship for this data.

5J Solutions to Practice Exercises
Practice Exercise 5.1
Substituting the sample’s absorbance into the calibration equation and 
solving for CA give

Ssamp = 0.114 = 29.59 M–1 × CA + 0.015
CA = 3.35 × 10-3 M

For the one-point standardization, we first solve for kA
16 Franke, J. P.; de Zeeuw, R. A.; Hakkert, R. Anal. Chem. 1978, 50, 1374–1380.
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.
. .k C

S
3 16 10

0 0931 29 46M MA
std

std
3

1

#
= = =-

-

and then use this value of kA to solve for CA.

.
. .C k

S
29 46

0 114 3 87 10M MA
A

samp
1

3#= = =-
-

When using multiple standards, the indeterminate errors that affect the 
signal for one standard are partially compensated for by the indeterminate 
errors that affect the other standards. The standard selected for the one-
point standardization has a signal that is smaller than that predicted by 
the regression equation, which underestimates kA and overestimates CA.

Click here to return to the chapter.

Practice Exercise 5.2
We begin with equation 5.8

S k C V
V C V

V
spike A A

f

o
std

f

std= +a k
rewriting it as

V
k C V k C V

V0
f

A A o
A std

f

std#= + & 0
which is in the form of the linear equation

y = y-intercept + slope × x
where y is Sspike and x is Cstd × Vstd/Vf. The slope of the line, therefore, 
is kA, and the y-intercept is kACAVo/Vf. The x-intercept is the value of x 
when y is zero, or

V
k C V k x0 -intercept

f

A A o
A #= + " ,

x k
k C V V

V
C V-intercept

A

A A o f

f

A o=- =-

Click here to return to the chapter.

Practice Exercise 5.3
Using the calibration equation from Figure 5.7a, we find that the x-in-
tercept is

.
. .x 0 0854

0 1478 1 731intercept mL mL1- =- =--

If we plug this result into the equation for the x-intercept and solve for 
CA, we find that the concentration of Mn2+ is

( )
.

( . ) .
.V

x C
C 25 00

1 731 100 6
6 9 6

-intercept
mL

mL mg/L
mg/L

o

std
A

#
=- -

-
==

For Figure 7b, the x-intercept is
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.
. .intx ercept 0 0425
0 1478 3 478- mL/mg mg/mL=- =-

and the concentration of Mn2+ is
( )

.
( . / ) .

.C V
x V

25 00
3 478 50 00

6 9 6
-intercept

mL
mg mL mL

mg/LA
o

f #
=- =-

-
=

Click here to return to the chapter.

Practice Exercise 5.4
We begin by setting up a table to help us organize the calculation.

xi yi xiyi xi
2

0.000 0.00 0.000 0.000
1.55×10–3 0.050 7.750×10–5 2.403×10–6

3.16×10–3 0.093 2.939×10–4 9.986×10–6

4.74×10–3 0.143 6.778×10–4 2.247×10–5

6.34×10–3 0.188 1.192×10–3 4.020×10–5

7.92×10–3 0.236 1.869×10–3 6.273×10–5

Adding the values in each column gives

. .x y2 371 10 0 710i
i

n

i
i

n

1

2

1
#= =

=

-

=

/ /   

. .x y x4 110 10 1 378 10i i
i

n

i
i

n

1

3 2

1

4# #= =
=

-

=

-/ /
When we substitute these values into equation 5.17 and equation 5.18, 
we find that the slope and the y-intercept are

( . ) ( . )
( . ) ( . ) ( . ) .b 6 1 378 10 2 371 10

6 4 110 10 2 371 10 0 710 29 571 4 2 2

3 2

# # #
# # # #

=
-

-
=- -

- -

. . ( . ) .b 6
0 710 29 57 2 371 10 0 00150

2# #
=

-
=

-

and that the regression equation is
Sstd = 29.57 × Cstd + 0.0015

To calculate the 95% confidence intervals, we first need to determine 
the standard deviation about the regression. The following table helps us 
organize the calculation.

xi yi yi
V ( )y yi i

2-V
0.000 0.00 0.0015 2.250×10–6

1.55×10–3 0.050 0.0473 7.110×10–6

3.16×10–3 0.093 0.0949 3.768×10–6
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4.74×10–3 0.143 0.1417 1.791×10–6

6.34×10–3 0.188 0.1890 9.483×10–7

7.92×10–3 0.236 0.2357 9.339×10–8

Adding together the data in the last column gives the numerator of equa-
tion 5.19 as 1.596×10–5. The standard deviation about the regression, 
therefore, is

. .s 6 2
1 596 10 1 997 10r

5
3# #= - =

-
-

Next, we need to calculate the standard deviations for the slope and the 
y-intercept using equation 5.20 and equation 5.21.

( . ) ( . )
( . ) .s 6 1 378 10 2 371 10

6 1 997 10 0 3007b 4 2 2

3 2

1 # # #
# #

=
-

=- -

-

( . ) ( . )
( . ) ( . ) .s 6 1 378 10 2 371 10
1 997 10 1 378 10 1 441 10b 4 2 2

3 2 4
3

0 # # #
# # #

#=
-

=- -

- -
-

and use them to calculate the 95% confidence intervals for the slope 
and the y-intercept

. ( . . ) . .b ts 29 57 2 78 0 3007 29 57 0 84M Mb1 1
1 1

1! ! # !b = = = - -

. ( . ) .. .b ts 0 0015 2 78 0 00151 441 10 0 0040b0 0
3

0! ! # !#b = = =-

With an average Ssamp of 0.114, the concentration of analyte, CA, is

.
. . .C b

S b
29 57

0 114 0 0015 3 80 10M MA
samp

1

0
1

3 1#=
-

= - =-
- -

The standard deviation in CA is

.
.

( . ) ( . )
( . . )

.

s 29 57
1 997 10

3
1

6
1

29 57 4 408 10
0 114 0 1183

4 778 10

C

3

2 5

2

5

A

#
# #

#

= + +
-

=

-

-

-

and the 95% confidence interval is

. . ( . )C ts 3 80 10 2 78 4 778 10A C
3 5

A! # ! # #n= = - -" ,
. .3 880 10 0 13 10M M3 3# ! #n= - -

Click here to return to the chapter.

Practice Exercise 5.5
To create a residual plot, we need to calculate the residual error for each 
standard. The following table contains the relevant information.
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xi yi yi
V y yi i-V

0.000 0.00 0.0015 –0.0015
1.55×10–3 0.050 0.0473 0.0027

3.16×10–3 0.093 0.0949 –0.0019

4.74×10–3 0.143 0.1417 0.0013

6.34×10–3 0.188 0.1890 –0.0010

7.92×10–3 0.236 0.2357 0.0003

Figure 5.27 shows a plot of the resulting residual errors. The residual er-
rors appear random, although they do alternate in sign, and that do not 
show any significant dependence on the analyte’s concentration. Taken 
together, these observations suggest that our regression model is appro-
priate.

Click here to return to the chapter

Practice Exercise 5.6
Begin by entering the data into an Excel spreadsheet, following the format 
shown in Figure 5.15. Because Excel’s Data Analysis tools provide most of 
the information we need, we will use it here. The resulting output, which 
is shown in Figure 5.28, provides the slope and the y-intercept, along 
with their respective 95% confidence intervals. Excel does not provide a 
function for calculating the uncertainty in the analyte’s concentration, CA, 
given the signal for a sample, Ssamp. You must complete these calculations 
by hand. With an Ssamp of 0.114, we find that CA is

.
. . .C b

S b
29 59

0 114 0 0014 3 80 10M MA
samp

1

0
1

3#=
-

= - =-
-

The standard deviation in CA is

Figure 5.27 Plot of the residual errors for 
the data in Practice Exercise 5.5.
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Figure 5.28 Excel’s summary of the regression results for Practice Exercise 5.6.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99979366
R Square 0.99958737
Adjusted R Square0.99948421
Standard Error 0.00199602
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 0.0386054 0.0386054 9689.9103 6.3858E-08
Residual 4 1.5936E-05 3.9841E-06
Total 5 0.03862133

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.00139272 0.00144059 0.96677158 0.38840479 -0.00260699 0.00539242 -0.00260699 0.00539242
Cstd 29.5927329 0.30062507 98.437342 6.3858E-08 28.7580639 30.4274019 28.7580639 30.4274019
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and the 95% confidence interval is

. . ( . )C ts 3 80 10 2 78 4 772 10A C
3 5

A! # ! # #n= = - -" ,
. .3 80 10 0 13 10M M3 3# ! #n= - -

Click here to return to the chapter

Practice Exercise 5.7
Figure 5.29 shows the R session for this problem, including loading the 
chemCal package, creating objects to hold the values for Cstd, Sstd, and 
Ssamp. Note that for Ssamp, we do not have the actual values for the three 
replicate measurements. In place of the actual measurements, we just en-
ter the average signal three times. This is okay because the calculation 
depends on the average signal and the number of replicates, and not on 
the individual measurements.

Click here to return to the chapter
> library("chemCal")
> conc=c(0, 1.55e-3, 3.16e-3, 4.74e-3, 6.34e-3, 7.92e-3)
> signal=c(0, 0.050, 0.093, 0.143, 0.188, 0.236)
> model=lm(signal~conc)
> summary(model)

Call:
lm(formula = signal ~ conc)

Residuals:
         1                       2                      3                    4                     5                     6 
-0.0013927   0.0027385  -0.0019058   0.0013377  -0.0010106   0.0002328 

Coefficients:
                       Estimate      Std. Error     t value     Pr(>|t|)    
(Intercept)    0.001393    0.001441      0.967      0.388    
conc             29.592733    0.300625    98.437     6.39e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.001996 on 4 degrees of freedom
Multiple R-Squared: 0.9996, Adjusted R-squared: 0.9995 
F-statistic:  9690 on 1 and 4 DF,  p-value: 6.386e-08 

> samp=c(0.114, 0.114, 0.114)
> inverse.predict(model,samp,alpha=0.05)
$Prediction
[1] 0.003805234

$`Standard Error`
[1] 4.771723e-05

$Confidence
[1] 0.0001324843

$`Confidence Limits`
[1] 0.003672750 0.003937719

Figure 5.29 R session for completing 
Practice Exercise 5.7.
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