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Chapter 14

Developing a Standard 
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14E Key Terms
14F Chapter Summary
14G Problems
14H Solutions to Practice Exercises

In Chapter 1 we made a distinction between analytical chemistry and chemical analysis. Among 
the goals of analytical chemistry are improving established methods of analysis, extending 
existing methods of analysis to new types of samples, and developing new analytical methods. 
Once we develop a new method, its routine application is best described as chemical analysis. 
We recognize the status of these established methods by calling them standard methods. 

Numerous examples of standard methods are presented and discussed in Chapters 8–13. 
What we have yet to consider is what constitutes a standard method. In this chapter we discuss 
how we develop a standard method, including optimizing the experimental procedure, verifying 
that the method produces acceptable precision and accuracy in the hands of a single analyst, 
and validating the method for general use.
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14A Optimizing the Experimental Procedure
In the presence of H2O2 and H2SO4, a solution of vanadium forms a 
reddish brown color that is believed to be a compound with the general 
formula (VO)2(SO4)3. The intensity of the solution’s color depends on the 
concentration of vanadium, which means we can use its absorbance at a 
wavelength of 450 nm to develop a quantitative method for vanadium. 

The intensity of the solution’s color also depends on the amounts of 
H2O2 and H2SO4 that we add to the sample—in particular, a large excess 
of H2O2 decreases the solution’s absorbance as it changes from a reddish 
brown color to a yellowish color.1 Developing a standard method for 
vanadium based on this reaction requires that we optimize the amount  of 
H2O2 and H2SO4 added to maximize the absorbance at 450 nm. Using the 
terminology of statisticians, we call the solution’s absorbance the system’s 
response. Hydrogen peroxide and sulfuric acid are factors whose concen-
trations, or factor levels, determine the system’s response. To optimize 
the method we need to find the best combination of factor levels. Usually 
we seek a maximum response, as is the case for the quantitative analysis 
of vanadium as (VO)2(SO4)3. In other situations, such as minimizing an 
analysis’s percent error, we seek a minimum response.

14A.1 Response Surfaces

One of the most effective ways to think about an optimization is to visualize 
how a system’s response changes when we increase or decrease the levels of 
one or more of its factors. We call a plot of the system’s response as a func-
tion of the factor levels a response surface. The simplest response surface 
has one factor and is drawn in two dimensions by placing the responses 
on the y-axis and the factor’s levels on the x-axis. The calibration curve in 
Figure 14.1 is an example of a one-factor response surface. We also can 
define the response surface mathematically. The response surface in Figure 
14.1, for example, is 

. .A C0 008 0 0896 A= +

where A is the absorbance and CA is the analyte’s concentration in ppm.
For a two-factor system, such as the quantitative analysis for vanadium 

described earlier, the response surface is a flat or curved plane in three di-
mensions. As shown in Figure 14.2a, we place the response on the z-axis 
and the factor levels on the x-axis and the y-axis. Figure 14.2a shows a pseu-
do-three dimensional wireframe plot for a system that obeys the equation

. . .R A AB3 0 0 30 0 020= - +

where R is the response, and A and B are the factors. We also can repre-
sent a two-factor response surface using the two-dimensional level plot in 
Figure 12.4b, which uses a color gradient to show the response on a two-

1 Vogel’s Textbook of Quantitative Inorganic Analysis, Longman: London, 1978, p. 752.

Figure 14.1 A calibration curve is an ex-
ample of a one-factor response surface. The 
responses (absorbance) are plotted on the 
y-axis and the factor levels (concentration 
of analyte) are plotted on the x-axis.

We will return to this analytical method 
for vanadium in Example 14.4 and in 
Problem 14.11.
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dimensional grid, or using the two-dimensional contour plot in Figure 
14.2c, which uses contour lines to display the response surface.

The response surfaces in Figure 14.2 cover a limited range of factor 
levels (0 ≤ A ≤ 10, 0 ≤ B ≤ 10), but we can extend each to more positive 
or to more negative values because there are no constraints on the factors. 
Most response surfaces of interest to an analytical chemist have natural 
constraints imposed by the factors, or have practical limits set by the analyst. 
The response surface in Figure 14.1, for example, has a natural constraint 
on its factor because the analyte’s concentration cannot be less than zero. 

If we have an equation for the response surface, then it is relatively 
easy to find the optimum response. Unfortunately, when developing a new 
analytical method, we rarely know any useful details about the response 
surface. Instead, we must determine the response surface’s shape and locate 
its optimum response by running appropriate experiments. The focus of 
this section is on useful experimental methods for characterizing a response 
surface. These experimental methods are divided into two broad categories: 
searching methods, in which an algorithm guides a systematic search for 
the optimum response, and modeling methods, in which we use a theo-
retical model or an empirical model of the response surface to predict the 
optimum response.

14A.2 Searching Algorithms for Response Surfaces

Figure 14.3 shows a portion of the South Dakota Badlands, a barren land-
scape that includes many narrow ridges formed through erosion. Suppose 
you wish to climb to the highest point on this ridge. Because the shortest 
path to the summit is not obvious, you might adopt the following simple 
rule: look around you and take one step in the direction that has the greatest 
change in elevation, and then repeat until no further step is possible. The 
route you follow is the result of a systematic search that uses a searching 
algorithm. Of course there are as many possible routes as there are starting 

Figure 14.2 Three examples of a two-factor response surface displayed as (a) a pseudo-three-dimensional wireframe plot, 
(b) a two-dimensional level plot, and (c) a two-dimensional contour plot. We call the display in (a) a pseudo-three dimen-
sional response surface because we show the presence of three dimensions on the page’s flat, two-dimensional surface.

We express this constraint as CA ≥ 0.

Searching algorithms have names: the one 
described here is the method of steepest 
ascent.

We also can overlay a level plot and a con-
tour plot. See Figure 14.7b for a typical 
example.
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points, three examples of which are shown in Figure 14.3. Note that some 
routes do not reach the highest point—what we call the global optimum. 
Instead, many routes reach a local optimum from which further move-
ment is impossible.

We can use a systematic searching algorithm to locate the optimum 
response for an analytical method. We begin by selecting an initial set of 
factor levels and measure the response. Next, we apply the rules of our 
searching algorithm to determine a new set of factor levels and measure 
its response, continuing this process until we reach an optimum response. 
Before we consider two common searching algorithms, let’s consider how 
we evaluate a searching algorithm.

EFFECTIVENESS AND EFFICIENCY

A searching algorithm is characterized by its effectiveness and its efficiency. 
To be effective, a searching algorithm must find the response surface’s 
global optimum, or at least reach a point near the global optimum. A 
searching algorithm may fail to find the global optimum for several rea-
sons, including a poorly designed algorithm, uncertainty in measuring the 
response, and the presence of local optima. Let’s consider each of these 
potential problems.

A poorly designed algorithm may prematurely end the search before 
it reaches the response surface’s global optimum. As shown in Figure 14.4, 
when climbing a ridge that slopes up to the northeast, an algorithm is likely 

Figure 14.3 Finding the highest point on a ridge using a searching algorithm is one useful 
method for finding the optimum on a response surface. The path on the far right reaches the 
highest point, or the global optimum. The other two paths reach local optima. This ridge is 
part of the South Dakota Badlands National Park. You can read about the geology of the park 
at www.nps.gov/badl/.

Figure 14.4 Example showing how a poor-
ly designed searching algorithm can fail to 
find a response surface’s global optimum.
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to fail it if limits your steps only to the north, south, east, or west. An algo-
rithm that cannot responds to a change in the direction of steepest ascent 
is not an effective algorithm.

All measurements contain uncertainty, or noise, that affects our ability 
to characterize the underlying signal. When the noise is greater than the lo-
cal change in the signal, then a searching algorithm is likely to end before it 
reaches the global optimum. Figure 14.5 provides a different view of Figure 
14.3, which shows us that the relatively flat terrain leading up to the ridge 
is heavily weathered and very uneven. Because the variation in local height 
(the noise) exceeds the slope (the signal), our searching algorithm ends the 
first time we step up onto a less weathered local surface. 

Finally, a response surface may contain several local optima, only one of 
which is the global optimum. If we begin the search near a local optimum, 
our searching algorithm may never reach the global optimum. The ridge in 
Figure 14.3, for example, has many peaks. Only those searches that begin 
at the far right will reach the highest point on the ridge. Ideally, a searching 
algorithm should reach the global optimum regardless of where it starts. 

A searching algorithm always reaches an optimum. Our problem, of 
course, is that we do not know if it is the global optimum. One method for 
evaluating a searching algorithm’s effectiveness is to use several sets of initial 
factor levels, find the optimum response for each, and compare the results. 
If we arrive at or near the same optimum response after starting from very 
different locations on the response surface, then we are more confident that 
is it the global optimum.

Efficiency is a searching algorithm’s second desirable characteristic. 
An efficient algorithm moves from the initial set of factor levels to the op-
timum response in as few steps as possible. In seeking the highest point on 
the ridge in Figure 14.5, we can increase the rate at which we approach the 
optimum by taking larger steps. If the step size is too large, however, the 
difference between the experimental optimum and the true optimum may 
be unacceptably large. One solution is to adjust the step size during the 
search, using larger steps at the beginning and smaller steps as we approach 
the global optimum.

ONE-FACTOR-AT-A-TIME OPTIMIZATION

A simple algorithm for optimizing the quantitative method for vanadium 
described earlier is to select initial concentrations for H2O2 and H2SO4 
and measure the absorbance. Next, we optimize one reagent by increas-
ing or decreasing its concentration—holding constant the second reagent’s 
concentration—until the absorbance decreases. We then vary the concen-
tration of the second reagent—maintaining the first reagent’s optimum 
concentration—until we no longer see an increase in the absorbance. We 
can stop this process, which we call a one-factor-at-a-time optimiza-
tion, after one cycle or repeat the steps until the absorbance reaches a 
maximum value or it exceeds an acceptable threshold value.

Figure 14.5 Another view of the ridge in 
Figure 14.3 that shows the weathered ter-
rain leading up to the ridge. The yellow rod 
at the bottom of the figure, which marks 
the trail, is about 18 in high. 

start

end
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A one-factor-at-a-time optimization is consistent with a notion that to 
determine the influence of one factor we must hold constant all other fac-
tors. This is an effective, although not necessarily an efficient experimental 
design when the factors are independent.2 Two factors are independent 
when a change in the level of one factor does not influence the effect of a 
change in the other factor’s level. Table 14.1 provides an example of two 
independent factors. If we hold factor B at level B1, changing factor A from 
level A1 to level A2 increases the response from 40 to 80, or a change in 
response, DR, of

R 80 40 40= - =

If we hold factor B at level B2, we find that we have the same change in 
response when the level of factor A changes from A1 to A2. 

R 100 60 40= - =

We can see this independence visually if we plot the response as a function 
of factor A’s level, as shown in Figure 14.6. The parallel lines show that the 
level of factor B does not influence factor A’s effect on the response. 

Mathematically, two factors are independent if they do not appear in 
the same term in the equation that describes the response surface. Equation 
14.1, for example, describes a response surface with independent factors 
because no term in the equation includes both factor A and factor B.

. . . . .R A B A B2 0 0 12 0 48 0 03 0 032 2= + + - - 14.1
Figure 14.7 shows the resulting pseudo-three-dimensional surface and a 
contour map for equation 14.1.

The easiest way to follow the progress of a searching algorithm is to map 
its path on a contour plot of the response surface. Positions on the response 
surface are identified as (a, b) where a and b are the levels for factor A and 
for factor B. The contour plot in Figure 14.7b, for example, shows four 
one-factor-at-a-time optimizations of the response surface for equation 
14.1. The effectiveness and efficiency of this algorithm when optimizing 
independent factors is clear—each trial reaches the optimum response at 
(2, 8) in a single cycle.   

Unfortunately, factors often are not independent. Consider, for ex-
ample, the data in Table 14.2 where a change in the level of factor B from 

2 Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Chemometrics, Wiley-Interscience: New York, 
1986.

Table 14.1 Example of Two Independent Factors
factor A factor B response

A1 B1 40
A2 B1 80
A1 B2 60
A2 B2 100

Figure 14.6 Factor effect plot for two inde-
pendent factors. Note that the two lines are 
parallel, indicating that the level for factor 
B does not influence how factor A’s level 
affects the response. 

Practice Exercise 14.1
Using the data in Table 14.1, show 
that factor B’s affect on the response 
is independent of factor A.
Click here to review your answer to 
this exercise.
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level B1 to level B2 has a significant effect on the response when factor A is 
at level A1 

R 60 20 40= - =

but no effect when factor A is at level A2. 

R 80 80 0= - =

Figure 14.8 shows this dependent relationship between the two factors. 
Factors that are dependent are said to interact and the equation for the 
response surface’ includes an interaction term that contains both factor A 
and factor B. The final term in equation 14.2, for example, accounts for the 
interaction between factor A and factor B.

. . .
. . .

R A B
A B AB

5 5 1 5 0 6
0 15 0 0245 0 08572 2

= + + -

- -
14.2

Figure 14.9 shows the resulting pseudo-three-dimensional surface and a 
contour map for equation 14.2.

The progress of a one-factor-at-a-time optimization for equation 14.2 
is shown in Figure 14.9b. Although the optimization for dependent factors 
is effective, it is less efficient than that for independent factors. In this case 

Figure 14.8 Factor effect plot for two de-
pendent factors. Note that the two lines 
are not parallel, indicating that the level 
for factor A influences how factor B’s level 
affects the response. 

Figure 14.7 The response surface for two independent factors based on equation 14.1, displayed as (a) a wireframe, and 
as (b) an overlaid contour plot and level plot. The orange lines in (b) show the progress of one-factor-at-a-time optimiza-
tions beginning from two starting points (t) and optimizing factor A first (solid line) or factor B first (dashed line). All 
four trials reach the optimum response of (2,8) in a single cycle.

Table 14.2 Example of Two Dependent Factors
factor A factor B response

A1 B1 20
A2 B1 80
A1 B2 60
A2 B2 80

Practice Exercise 14.2
Using the data in Table 14.2, show 
that factor A’s affect on the response 
is independent of factor B.
Click here to review your answer to 
this exercise.
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it takes four cycles to reach the optimum response of (3, 7) if we begin at 
(0, 0). 

SIMPLEX OPTIMIZATION

One strategy for improving the efficiency of a searching algorithm is to 
change more than one factor at a time. A convenient way to accomplish this 
when there are two factors is to begin with three sets of initial factor levels 
as the vertices of a triangle. After measuring the response for each set of 
factor levels, we identify the combination that gives the worst response and 
replace it with a new set of factor levels using a set of rules (Figure 14.10). 
This process continues until we reach the global optimum or until no fur-
ther optimization is possible. The set of factor levels is called a simplex. In 
general, for k factors a simplex is a k + 1 dimensional geometric figure.3

3 (a) Spendley, W.; Hext, G. R.; Himsworth, F. R. Technometrics 1962, 4, 441–461; (b) Deming, 
S. N.; Parker, L. R. CRC Crit. Rev. Anal. Chem. 1978 7(3), 187–202.

Figure 14.9 The response surface for two dependent factors based on equation 14.2, displayed as (a) a wireframe, and as 
(b) an overlaid contour plot and level plot. The orange lines in (b) show the progress of one-factor-at-a-time optimiza-
tion beginning from the starting point (t) and optimizing factor A first. The red dot (t) marks the end of the first cycle. 
It takes four cycles to reach the optimum response of (3, 7) as shown by the green dot (t). 

Thus, for two factors the simplex is a tri-
angle. For three factors the simplex is a 
tetrahedron.

Figure 14.10 Example of a two-factor simplex. 
The original simplex is formed by the green, 
orange, and red vertices. Replacing the worst 
vertex with a new vertex moves the simplex to 
a new position on the response surface.
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To place the initial two-factor simplex on the response surface, we 
choose a starting point (a, b) for the first vertex and place the remaining two 
vertices at (a + sa, b) and (a + 0.5sa, b + 0.87sb) where sa and sb are step sizes 
for factor A and for factor B.4 The following set of rules moves the simplex 
across the response surface in search of the optimum response:
Rule 1. Rank the vertices from best (vb) to worst (vw).
Rule 2. Reject the worst vertex (vw) and replace it with a new vertex (vn) 

by reflecting the worst vertex through the midpoint of the remain-
ing vertices. The new vertex’s factor levels are twice the average 
factor levels for the retained vertices minus the factor levels for 
the worst vertex. For a two-factor optimization, the equations are 
shown here where vs is the third vertex.

a a a a2 2v
v v

vn
b s

w= + -a k 14.3

b b b b2 2v
v v

vn
b s

w= + -a k 14.4

Rule 3. If the new vertex has the worst response, then return to the previ-
ous vertex and reject the vertex with the second worst response, 
(vs) calculating the new vertex’s factor levels using rule 2. This rule 
ensures that the simplex does not return to the previous simplex.

Rule 4. Boundary conditions are a useful way to limit the range of pos-
sible factor levels. For example, it may be necessary to limit a 
factor’s concentration for solubility reasons, or to limit the tem-
perature because a reagent is thermally unstable.  If the new vertex 
exceeds a boundary condition, then assign it the worst response 
and follow rule 3.

Because the size of the simplex remains constant during the search, this 
algorithm is called a fixed-sized simplex optimization. Example 14.1 
illustrates the application of these rules.

Example 14.1
Find the optimum for the response surface in Figure 14.9 using the fixed-
sized simplex searching algorithm. Use (0, 0) for the initial factor levels and 
set each factor’s step size to 1.00.

SOLUTION

Letting a = 0, b =0, sa =1.00, and sb =1.00 gives the vertices for the initial 
simplex as

: ( , ) ( , )a b1 0 0vertex =

: ( , ) ( . , )a s b2 1 00 0vertex a+ =

: ( . , . ) ( . , . )a s b s3 0 5 0 87 0 50 0 87vertex a b+ + =

4 Long, D. E. Anal. Chim. Acta 1969, 46, 193–206.

The variables a and b in equation 14.3 and 
equation 14.4 are the factor levels for fac-
tor A and for factor B, respectively. Prob-
lem 14.3 in the end-of-chapter problems 
asks you to derive these equations.
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The responses, from equation 14.2, for the three vertices are shown in the 
following table

vertex a b response
v1 0 0 5.50
v2 1.00 0 6.85
v3 0.50 0.87 6.68

with v1 giving the worst response and v3 the best response. Following Rule 
1, we reject v1 and replace it with a new vertex using equation 14.3 and 
equation 14.4; thus

. . .

. .

a

b

2 2
1 00 0 50 0 1 50

2 2
0 0 87 0 0 87

v

v

4

4

#

#

= + - =

= + - =

The following table gives the vertices of the second simplex.
vertex a b response

v2 1.50 0 6.85
v3 0.50 0.87 6.68
v4 1.50 0.87 7.80

with v3 giving the worst response and v4 the best response. Following Rule 
1, we reject v3 and replace it with a new vertex using equation 14.3 and 
equation 14.4; thus

. . . .

. .

a

b

2 2
1 00 1 50 0 50 2 00

2 2
0 0 87 0 87 0

v

v

5

5

#

#

= + - =

= + - =

The following table gives the vertices of the third simplex.
vertex a b response

v2 1.50 0 6.85
v4 1.50 0.87 7.80
v5 2.00 0 7.90

The calculation of the remaining vertices is left as an exercise. Figure 14.11 
shows the progress of the complete optimization. After 29 steps the simplex 
begins to repeat itself, circling around the optimum response of (3, 7).

14A.3 Mathematical Models of Response Surfaces

A response surface is described mathematically by an equation that relates 
the response to its factors. Equation 14.1 and equation 14.2 provide two ex-
amples of such mathematical models. If we measure the response for several 
combinations of factor levels, then we can model the response surface by 

The size of the initial simplex ultimately 
limits the effectiveness and the efficiency 
of a fixed-size simplex searching algo-
rithm. We can increase its efficiency by 
allowing the size of the simplex to expand 
or to contract in response to the rate at 
which we approach the optimum. For ex-
ample, if we find that a new vertex is better 
than any of the vertices in the preceding 
simplex, then we expand the simplex fur-
ther in this direction on the assumption 
that we are moving directly toward the 
optimum. Other conditions might cause 
us to contract the simplex—to make it 
smaller—to encourage the optimization 
to move in a different direction. We call 
this a variable-sized simplex optimiza-
tion.
Consult this chapter’s additional resourc-
es for further details of the variable-sized 
simplex optimization.
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using a regression analysis to fit an appropriate equation to the data. There 
are two broad categories of models that we can use for a regression analysis: 
theoretical models and empirical models.

THEORETICAL MODELS OF THE RESPONSE SURFACE

A theoretical model is derived from the known chemical and physical 
relationships between the response and its factors. In spectrophotometry, 
for example, Beer’s law is a theoretical model that relates an analyte’s absor-
bance, A, to its concentration, CA

A bCAf=

where f is the molar absorptivity and b is the pathlength of the electromag-
netic radiation passing through the sample. A Beer’s law calibration curve, 
therefore, is a theoretical model of a response surface.

EMPIRICAL MODELS OF THE RESPONSE SURFACE

In many cases the underlying theoretical relationship between the response 
and its factors is unknown. We still can develop a model of the response 
surface if we make some reasonable assumptions about the underlying re-
lationship between the factors and the response. For example, if we believe 
that the factors A and B are independent and that each has only a first-order 
effect on the response, then the following equation is a suitable model.

R A Ba b0b b b= + +

where R is the response, A and B are the factor levels, and b0, ba, and bb are 
adjustable parameters whose values are determined by a linear regression 
analysis. Other examples of equations include those for dependent factors

R A B ABa b ab0b b b b= + + +

Figure 14.11 Progress of the fixed-size simplex 
optimization in Example 14.1. The green dot (t) 
marks the optimum response of (3, 7). Optimi-
zation ends when the simplexes begin to circle 
around a single vertex. 
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For a review of Beer’s law, see Section 
10B.3 in Chapter 10. Figure 14.1 is an 
example of a Beer’s law calibration curve.

The calculations for a linear regression 
when the model is first-order in one factor 
(a straight line) are described in Chapter 
5D. A complete mathematical treatment 
of linear regression for models that are sec-
ond-order in one factor or which contain 
more than one factor is beyond the scope 
of this text. The computations for a few 
special cases, however, are straightforward 
and are considered in this section. A more 
comprehensive treatment of linear regres-
sion is available in several of this chapter’s 
additional resources.
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and those with higher-order terms.

R A B A Ba b aa bb0
2 2b b b b b= + + + +

Each of these equations provides an empirical model of the response sur-
face because it has no basis in a theoretical understanding of the relation-
ship between the response and its factors. Although an empirical model 
may provide an excellent description of the response surface over a limited 
range of factor levels, it has no basis in theory and we cannot reliably extend 
it to unexplored parts of the response surface. 

FACTORIAL DESIGNS

To build an empirical model we measure the response for at least two levels 
for each factor. For convenience we label these levels as high, Hf, and low, 
Lf, where f is the factor; thus HA is the high level for factor A and LB is the 
low level for factor B. If our empirical model contains more than one factor, 
then each factor’s high level is paired with both the high level and the low 
level for all other factors. In the same way, the low level for each factor is 
paired with the high level and the low level for all other factors. As shown in 
Figure 14.12, this requires 2k experiments where k is the number of factors. 
This experimental design is known as a 2K factorial design.

Figure 14.12 2k factorial designs for (top) k = 2, and for (bottom) k = 3. A 22 factorial 
design requires four experiments and a 23 factorial design requires eight experiments.

Another system of notation is to use a plus 
sign (+) to indicate a factor’s high level 
and a minus sign (–) to indicate its low 
level. We will use H or L when writing an 
equation and a plus sign or a minus sign 
in tables.

1 2

3 4factor B
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6 7
8
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CODED FACTOR LEVELS

The calculations for a 2k factorial design are straightforward and easy to 
complete with a calculator or a spreadsheet. To simplify the calculations, 
we code the factor levels using +1 for a high level and –1 for a low level. 
Coding has two additional advantages: scaling the factors to the same mag-
nitude makes it easier to evaluate each factor’s relative importance, and it 
places the model’s intercept, b0, at the center of the experimental design. As 
shown in Example 14.2, it is easy to convert between coded and uncoded 
factor levels. 

Example 14.2
To explore the effect of temperature on a reaction, we assign 30 oC to a 
coded factor level of –1, and assign a coded level +1 to a temperature of 
50 oC. What temperature corresponds to a coded level of –0.5 and what is 
the coded level for a temperature of 60 oC?

SOLUTION

The difference between –1 and +1 is 2, and the difference between 30 oC 
and 50 oC is 20 oC; thus, each unit in coded form is equivalent to 10 oC 
in uncoded form. With this information, it is easy to create a simple scale 
between the coded and the uncoded values, as shown in Figure 14.13. A 
temperature of 35 oC corresponds to a coded level of –0.5 and a coded level 
of +2 corresponds to a temperature of 60 oC. 

DETERMINING THE EMPIRICAL MODEL

Let’s begin by considering a simple example that involves two factors, A and 
B, and the following empirical model.

R A B ABa b ab0b b b b= + + + 14.5
A 2k factorial design with two factors requires four runs. Table 14.3 pro-
vides the uncoded levels (A and B), the coded levels (A* and B*), and the 
responses (R) for these experiments. The terms b0, ba, bb, and bab in equa-
tion 14.5 account for, respectively, the mean effect (which is the average 
response), the first-order effects due to factor A and to factor B, and the 
interaction between the two factors. 

Equation 14.5 has four unknowns—the four beta terms—and Table 
14.3 describes the four experiments. We have just enough information to 

Figure 14.13 The relationship between the coded factor levels and the uncoded factor levels for 
Example 14.2. The numbers in red are the values defined in the 22 factorial design. 
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calculate values for b0, ba, bb, and bab. When working with the coded 
factor levels, the values of these parameters are easy to calculate using the 
following equations, where n is the number of runs.

b n R1
i

i

n

0 0
1

.b =
=

/ 14.6

b n A R1 *
a a i i

i

n

1
.b =

=

/ 14.7

b n B R1 *
b b i i

i

n

1
.b =

=

/ 14.8

b n A B R1 * *
ab ab i i i

i

n

1
.b =

=

/ 14.9

Solving for the estimated parameters using the data in Table 14.3
. . . . .b 4

22 5 11 5 17 5 8 5 15 00=
+ + + =

. . . . .b 4
22 5 11 5 17 5 8 5 2 0a=
+ - - =

. . . . .b 4
22 5 11 5 17 5 8 5 5 0b=
- + - =

. . . . .b 4
22 5 11 5 17 5 8 5 0 5ab=
- - + =

leaves us with the coded empirical model for the response surface.
. . . .R A B A B15 0 2 0 5 0 0 05* * * *= + + + 14.10

We can extend this approach to any number of factors. For a system 
with three factors—A, B, and C—we can use a 23 factorial design to deter-
mine the parameters in the following empirical model

R A B C
AB AC BC ABC

a b c

ab ac bc abc

0b b b b

b b b b

= + + + +

+ + +
14.11

where A, B, and C are the factor levels. The terms b0, ba, bb, and bab are 
estimated using equation 14.6, equation 14.7, equation 14.8, and equation 
14.9, respectively. To find estimates for the remaining parameters we use 
the following equations.

Table 14.3 Example of Uncoded and Coded Factor Levels 
and Responses for a 22 Factorial Design

run A B A* B* R
1 15 30 +1 +1 22.5
2 15 10 +1 –1 11.5
3 5 30 –1 +1 17.5
4 5 10 –1 –1 8.5

Recall that we introduced coded factor 
levels with the promise that they simplify 
calculations.

In Section 5D.1 of Chapter 5 we intro-
duced the convention of using b to indi-
cate the true value of a regression’s model’s 
parameter’s and b to indicate its calculated 
value. We estimate b from b.

Although we can convert this coded model 
into its uncoded form, there is no need to 
do so. If we need to know the response for 
a new set of factor levels, we just convert 
them into coded form and calculate the 
response. For example, if A is 10 and B is 
15, then A* is 0 and B* is –0.5. Substitut-
ing these values into equation 14.10 gives 
a response of 12.5.
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b n C R1 *
c c i i

i

n

1
.b =

=

/ 14.12

b n A C R1 * *
ac ac i i i

i

n

1
.b =

=

/ 14.13

b n B C R1 * *
bc bc i i i

i

n

1
.b =

=

/ 14.14

b n A B C R1 * * *
abc abc i i i i

i

n

1
.b =

=

/ 14.15

Example 14.3
Table 14.4 lists the uncoded factor levels, the coded factor levels, and the 
responses for a 23 factorial design. Determine the coded empirical model 
for the response surface based on equation 14.11. What is the expected 
response when A is 10, B is 15, and C is 50?

SOLUTION

Equation 14.5 has eight unknowns—the eight beta terms—and Table 
14.4 describes eight experiments. We have just enough information to 
calculate values for b0, ba, bb, bc, bab, bac, bbc, and babc; these values are

( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 56 0

0 #= + + + +

+ + + =

( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 18 0

a #= + + + -

- - - =

( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 15 0

b #= + - - +

+ - - =

Table 14.4 Example of Uncoded and Coded Factor Levels and Responses 
for the 23 Factorial Design in Example 14.3

run A B C A* B* C* R
1 15 30 45 +1 +1 +1 137.25
2 15 30 15 +1 +1 –1 54.75
3 15 10 45 +1 –1 +1 73.75
4 15 10 15 +1 –1 –1 30.25
5 5 30 45 –1 +1 +1 61.75
6 5 30 15 –1 +1 –1 30.25
7 5 10 45 –1 –1 +1 41.25
8 5 10 15 –1 –1 –1 18.75
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( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 22 5

c #= - + - +

- + - =

( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 7 0

ab #= + - - -

- + + =

( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 9 0

ac #= - + - -

+ - + =

( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 6 0

bc #= - - + +

- - + =

( . . . .

. . . . ) .

b 8
1 137 25 54 75 73 75 30 25

61 75 30 25 41 25 18 75 3 75

abc #= - - + -

+ + - =

The coded empirical model, therefore, is
. . . .
. . . .

R A B C
A B A C B C A B C

56 0 18 0 15 0 22 5
7 0 9 0 6 0 3 75

* * *

* * * * * * * * *

= + + + +

+ + +

To find the response when A is 10, B is 15, and C is 50, we first convert 
these values into their coded form. Figure 14.14 helps us make the appro-
priate conversions; thus, A* is 0, B* is –0.5, and C* is +1.33. Substituting 
back into the empirical model gives a response of

. . ( ) . ( . ) . ( . )
. ( ) ( . ) . ( ) ( . ) . ( . ) ( . )

. ( ) ( . ) ( . ) . .

R 56 0 18 0 0 15 0 0 5 22 5 1 33
7 0 0 0 5 9 0 0 1 33 6 0 0 5 1 33

3 75 0 0 5 1 33 74 435 74 4.

= + + - + +

- + + - +

- =

A 2k factorial design can model only a factor’s first-order effect, includ-
ing first-order interactions, on the response. A 22 factorial design, for ex-
ample, includes each factor’s first-order effect (ba and bb) and a first-order 
interaction between the factors (bab). A 2k factorial design cannot model 
higher-order effects because there is insufficient information. Here is simple 
example that illustrates the problem. Suppose we need to model a system in 

Figure 14.14 The relationship between the coded factor levels and the uncoded factor levels 
for Example 14.3. The numbers in red are the values defined in the 23 factorial design. 
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which the response is a function of a single factor, A. Figure 14.15a shows 
the result of an experiment using a 21 factorial design. The only empirical 
model we can fit to the data is a straight line.

R Aa0b b= +

If the actual response is a curve instead of a straight-line, then the empiri-
cal model is in error. To see evidence of curvature we must measure the 
response for at least three levels for each factor. We can fit the 31 factorial 
design in Figure 14.15b to an empirical model that includes second-order 
factor effects.

R A Aa aa0
2b b b= + +

In general, an n-level factorial design can model single-factor and interac-
tion terms up to the (n – 1)th order.

We can judge the effectiveness of a first-order empirical model by mea-
suring the response at the center of the factorial design. If there are no 
higher-order effects, then the average response of the trials in a 2k factorial 
design should equal the measured response at the center of the factorial 
design. To account for influence of random errors we make several deter-
minations of the response at the center of the factorial design and establish 
a suitable confidence interval. If the difference between the two responses 
is significant, then a first-order empirical model probably is inappropriate.  

Example 14.4
One method for the quantitative analysis of vanadium is to acidify the so-
lution by adding H2SO4 and oxidizing the vanadium with H2O2 to form 
a red-brown soluble compound with the general formula (VO)2(SO4)3. 
Palasota and Deming studied the effect of the relative amounts of H2SO4 

Figure 14.15 A curved one-factor response surface, in red, showing (a) the limitation of using 
a 21 factorial design, which can fit only a straight-line to the data, and (b) the application of a 
31 factorial design that takes into account second-order effects.
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One of the advantages of working with 
a coded empirical model is that b0 is the 
average response of the 2 � k trials in a 2k 
factorial design.
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and H2O2 on the solution’s absorbance, reporting the following results for 
a 22 factorial design.5

H2SO4 H2O2 absorbance
+1 +1 0.330

+1 –1 0.359
–1 +1 0.293
–1 –1 0.420

Four replicate measurements at the center of the factorial design give ab-
sorbances of 0.334, 0.336, 0.346, and 0.323. Determine if a first-order 
empirical model is appropriate for this system. Use a 90% confidence 
interval when accounting for the effect of random error.

SOLUTION

We begin by determining the confidence interval for the response at the 
center of the factorial design. The mean response is 0.335 with a standard 
deviation of 0.0094, which gives a 90% confidence interval of

. ( . ) ( . ) . .X
n

ts 0 335
4

2 35 0 0094 0 335 0 011! ! !n= = =

The average response, R , from the factorial design is
. . . . .R 4

0 330 0 359 0 293 0 420 0 350= + + + =

Because R  exceeds the confidence interval’s upper limit of 0.346, we can 
reasonably assume that a 22 factorial design and a first-order empirical 
model are inappropriate for this system at the 95% confidence level. 

If we cannot fit a first-order empirical model to our data, we may be 
able to model it using a full second-order polynomial equation, such as that 
shown here for a two factors.

R A B A B ABa b aa bb ab0
2 2b b b b b b= + + + + +

Because we must measure each factor for at least three levels if we are to de-
tect curvature (see Figure 14.15b), a convenient experimental design is a 3k 
factorial design. A 32 factorial design for two factors, for example, is shown 
in Figure 14.16. The computations for 3k factorial designs are not as easy 
to generalize as those for a 2k factorial design and are not considered in this 
text. See this chapter’s additional resources for details about the calculations.

CENTRAL COMPOSITE DESIGNS

One limitation to a 3k factorial design is the number of trials we need to run. 
As shown in Figure 14.16, a 32 factorial design requires 9 trials. This num-
ber increases to 27 for three factors and to 81 for 4 factors. A more efficient 

5 Palasota, J. A.; Deming, S. N. J. Chem. Educ. 1992, 62, 560–563.

Problem 14.11 in the end-of-chapter 
problems provides a complete empirical 
model for this system.

Figure 14.16 A 3k factorial design for 
k = 2.
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experimental design for a system that contains more than two factors is a 
central composite design, two examples of which are shown in Figure 
14.17. The central composite design consists of a 2k factorial design, which 
provides data to estimate each factor’s first-order effect and interactions be-
tween the factors, and a star design that has 2k + 1 points, which provides 
data to estimate second-order effects. Although a central composite design 
for two factors requires the same number of trials, nine, as a 32 factorial 
design, it requires only 15 trials and 25 trials when using three factors or 
four factors. See this chapter’s additional resources for details about the 
central composite designs.

14B Verifying the Method
After developing and optimizing a method, the next step is to determine 
how well it works in the hands of a single analyst. Three steps make up this 
process: determining single-operator characteristics, completing a blind 
analysis of standards, and determining the method’s ruggedness. If another 
standard method is available, then we can analyze the same sample using 
both the standard method and the new method, and compare the results. 
If the result for any single test is unacceptable, then the method is not a 
suitable standard method.

14B.1 Single Operator Characteristics

The first step in verifying a method is to determine the precision, accuracy, 
and detection limit when a single analyst uses the method to analyze a stan-
dard sample. The detection limit is determined by analyzing an appropriate 
reagent blank. Precision is determined by analyzing replicate portions of 
the sample, preferably more than ten. Accuracy is evaluated using a t-test 

Figure 14.17 Two examples of a central composite design for (a) k = 2 and (b) k = 3. The 
points in blue are a 2k factorial design, and the points in red are a star design. 
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See Chapter 4G for a discussion of detec-
tion limits. Pay particular attention to 
the difference between a detection limit, 
a limit of identification, and a limit of 
quantitation.
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to compare the experimental results to the known amount of analyte in the 
standard. Precision and accuracy are evaluated for several different concen-
trations of analyte, including at least one concentration near the detection 
limit, and for each different sample matrix. Including different concentra-
tions of analyte helps to identify constant sources of determinate error and 
to establish the range of concentrations for which the method is applicable. 

14B.2 Blind Analysis of Standard Samples

Single-operator characteristics are determined by analyzing a standard sam-
ple that has a concentration of analyte known to the analyst. The second 
step in verifying a method is a blind analysis of standard samples. Al-
though the concentration of analyte in the standard is known to a supervi-
sor, the information is withheld from the analyst. After analyzing the stan-
dard sample several times, the analyte’s average concentration is reported 
to the test’s supervisor. To be accepted, the experimental mean must be 
within three standard deviations—as determined from the single-operator 
characteristics—of the analyte’s known concentration.

14B.3 Ruggedness Testing

An optimized method may produce excellent results in the laboratory that 
develops a method, but poor results in other laboratories. This is not par-
ticularly surprising because a method typically is optimized by a single 
analyst using the same reagents, equipment, and instrumentation for each 
trial. Any variability introduced by different analysts, reagents, equipment, 
and instrumentation is not included in the single-operator characteristics. 
Other less obvious factors may affect an analysis, including environmental 
factors, such as the temperature or relative humidity in the laboratory; if 
the procedure does not require control of these conditions, then they may 
contribute to variability. Finally, the analyst who optimizes the method 
usually takes particular care to perform the analysis in exactly the same way 
during every trial, which may minimize the run-to-run variability.

An important step in developing a standard method is to determine 
which factors have a pronounced effect on the quality of the results. Once 
we identify these factors, we can write specific instructions that  specify how 
these factors must be controlled. A procedure that, when carefully followed, 
produces results of high quality in different laboratories is considered rug-
ged. The method by which the critical factors are discovered is called rug-
gedness testing.6

Ruggedness testing usually is performed by the laboratory that develops 
the standard method. After identifying potential factors, their effects on the 
response are evaluated by performing the analysis at two levels for each fac-
tor. Normally one level is that specified in the procedure, and the other is 
a level likely encountered when the procedure is used by other laboratories. 

6 Youden, W. J. Anal. Chem. 1960, 32(13), 23A–37A.

See Chapter 4B for a review of constant 
determinate errors. Figure 4.5 illustrates 
how we can detect a constant determinate 
error by analyzing samples containing dif-
ferent amounts of analyte.

An even more stringent requirement is 
to require that the experimental mean be 
within two standard deviations of the ana-
lyte’s known concentration.

For example, if temperature is a con-
cern, we might specify that it be held at 
25 ± 2 oC.

See Section 4F.1 for a review of the t-test.
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This approach to ruggedness testing can be time consuming. If there are 
seven potential factors, for example, a 27 factorial design can evaluate each 
factor’s first-order effect. Unfortunately, this requires a total of 128 trials—
too many trials to be a practical solution. A simpler experimental design is 
shown in Table 14.5, in which the two factor levels are identified by upper 
case and lower case letters. This design, which is similar to a 23 factorial 
design, is called a fractional factorial design. Because it includes only eight 
runs, the design provides information only the average response and the 
seven first-order factor effects. It does not provide sufficient information to 
evaluate higher-order effects or interactions between factors, both of which 
are probably less important than the first-order effects. 

The experimental design in Table 14.5 is balanced in that each of a 
factor’s two levels is paired an equal number of times with the upper case 
and lower case levels for every other factor. To determine the effect, E, of 
changing a factor’s level, we subtract the average response when the factor is 
at its upper case level from the average value when it is at its lower case level.

E
R R

4 4
i iupper case lower case= -

_ _i i/ / 14.16

Because the design is balanced, the levels for the remaining factors appear 
an equal number of times in both summation terms, canceling their effect 
on E. For example, to determine the effect of factor A, EA, we subtract the 
average response for runs 5–8 from the average response for runs 1–4. Fac-
tor B does not affect EA because its upper case levels in runs 1 and 2 are 
canceled by the upper case levels in runs 5 and 6, and its lower case levels 
in runs 3 and 4 are canceled by the lower case levels in runs 7 and 8. After 
we calculate each of the factor effects we rank them from largest to smallest 
without regard to sign, identifying those factors whose effects are substan-
tially larger than the other factors. 

Table 14.5 Experimental Design for a Ruggedness Test Involving Seven Factors
factors

run A B C D E F G response
1 A B C D E F G R1
2 A B c D e f g R2
3 A b C d E f g R3
4 A b c d e F G R4
5 a B C d e F g R5
6 a B c d E f G R6
7 a b C D e f G R7
8 a b c D E F g R8

To see that this is design is balanced, look 
closely at the last four runs. Factor A is 
present at its level a for all four of these 
runs. For each of the remaining factors, 
two levels are upper case and two levels are 
lower case. Runs 5–8 provide information 
about the effect of a on the response, but 
do not provide information about the ef-
fect of any other factor. Runs 1, 2, 5, and 
6 provide information about the effect of 
B, but not of the remaining factors. Try a 
few other examples to convince yourself 
that this relationship is general.

Why does this model estimate the seven 
first-order factor effects, E, and not seven 
of the 20 possible first-order interactions? 
With eight experiments, we can only 
choose to calculate seven parameters (plus 
the average response). The calculation of 
ED, for example, also gives the value for 
EAB. You can convince yourself of this by 
replacing each upper case letter with a +1 
and each lower case letter with a –1 and 
noting that A � B = D. We choose to re-
port the first-order factor effects because 
they likely are more important than inter-
actions between factors. 
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We also can use this experimental design to estimate the method’s ex-
pected standard deviation due to the effects of small changes in uncon-
trolled or poorly controlled factors.7 

s E7
2

i
i

n
2

1
=

=

/ 14.17

If this standard deviation is too large, then the procedure is modified to 
bring under control the factors that have the greatest effect on the response.

Example 14.5
The concentration of trace metals in sediment samples collected from riv-
ers and lakes are determined by extracting with acid and analyzing the ex-
tract by atomic absorption spectrophotometry. One procedure calls for an 
overnight extraction using dilute HCl or HNO3. The samples are placed 
in plastic bottles with 25 mL of acid and then placed on a shaker oper-
ated at a moderate speed and at ambient temperature. To determine the 
method’s ruggedness, the effect of the following factors was studied using 
the experimental design in Table 14.5.

Factor A: extraction time A = 24 h a = 12 h
Factor B: shaking speed B = medium b = high
Factor C: acid type C = HCl c = HNO3
Factor D: acid concentration D = 0.1 M d = 0.05 M
Factor E: volume of acid E = 25 mL e = 35 mL
Factor F: type of container F = plastic f = glass
Factor G: temperature G = ambient g = 25 oC

Eight replicates of a standard sample that contains a known amount of ana-
lyte are carried through the procedure. The percentage of analyte recovered 
in the eight samples are as follows: R1 = 98.9, R2 = 99.0, R3 = 97.5, R4 = 
97.7, R5 = 97.4, R6 = 97.3, R7 = 98.6, and R8 = 98.6. Identify the factors 
that have a significant effect on the response and estimate the method’s 
expected standard deviation.

SOLUTION

To calculate the effect of changing each factor’s level we use equation 14.16 
and substitute in appropriate values. For example, EA is

. . . .

. . . . .

E 4
98 9 99 0 97 5 97 7

4
97 4 97 3 98 6 98 6 0 30

A=
+ + + -

+ + + =

7 Youden, W. J. “Statistical Techniques for Collaborative Tests,” in Statistical Manual of the Associa-
tion of Official Analytical Chemists, Association of Official Analytical Chemists: Washington, D. 
C., 1975, p. 35.
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Completing the remaining calculations and ordering the factors by the 
absolute values of their effects

 Factor D 1.30
 Factor A 0.35
 Factor E –0.10
 Factor B 0.05
 Factor C –0.05
 Factor F 0.05
 Factor G 0.00

shows us that the concentration of acid (Factor D) has a substantial effect 
on the response, with a concentration of 0.05 M providing a much lower 
percent recovery. The extraction time (Factor A) also appears significant, 
but its effect is not as important as the acid’s concentration. All other fac-
tors appear insignificant. The method’s estimated standard deviation is

( . ) ( . ) ( . )
( . ) ( . ) ( . ) ( . )

.s 7
2 1 30 0 35 0 10

0 05 0 05 0 05 0 00
0 72

2 2 2

2 2 2 2=
+ + - +

+ - + +
=) 3

which, for an average recovery of 98.1% gives a relative standard deviation 
of approximately 0.7%. If we control the acid’s concentration so that its 
effect approaches that for factors B, C, and F, then the relative standard 
deviation becomes 0.18, or approximately 0.2%.

14B.4 Equivalency Testing

If an approved standard method is available, then a new method should be 
evaluated by comparing results to those obtained when using the standard 
method. Normally this comparison is made at a minimum of three concen-
trations of analyte to evaluate the new method over a wide dynamic range. 
Alternatively, we can plot the results obtained using the new method against 
results obtained using the approved standard method. A slope of 1.00 and 
a y-intercept of 0.0 provides evidence that the two methods are equivalent.

14C Validating the Method as a Standard Method
For an analytical method to be useful, an analyst must be able to achieve re-
sults of acceptable accuracy and precision. Verifying a method, as described 
in the previous section, establishes this goal for a single analyst. Another 
requirement for a useful analytical method is that an analyst should obtain 
the same result from day-to-day, and different labs should obtain the same 
result when analyzing the same sample. The process by which we approve a 
method for general use is known as validation and it involves a collabora-
tive test of the method by analysts in several laboratories. Collaborative test-
ing is used routinely by regulatory agencies and professional organizations, 
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such as the U. S. Environmental Protection Agency, the American Society 
for Testing and Materials, the Association of Official Analytical Chemists, 
and the American Public Health Association. Many of the representative 
methods in earlier chapters are identified by these agencies as validated 
methods.

When an analyst performs a single analysis on a single sample the differ-
ence between the experimentally determined value and the expected value 
is influenced by three sources of error: random errors, systematic errors 
inherent to the method, and systematic errors unique to the analyst. If the 
analyst performs enough replicate analyses, then we can plot a distribu-
tion of results, as shown in Figure 14.18a. The width of this distribution 
is described by a standard deviation that provides an estimate of the ran-
dom errors affecting the analysis. The position of the distribution’s mean,
X , relative to the sample’s true value, n, is determined both by systematic 
errors inherent to the method and those systematic errors unique to the 
analyst. For a single analyst there is no way to separate the total systematic 
error into its component parts.

The goal of a collaborative test is to determine the magnitude of all 
three sources of error. If several analysts each analyze the same sample one 
time, the variation in their collective results (see Figure 14.18b) includes 
contributions from random errors and systematic errors (biases) unique to 
the analysts. Without additional information, we cannot separate the stan-
dard deviation for this pooled data into the precision of the analysis and 
the systematic errors introduced by the analysts. We can use the position of 
the distribution, to detect the presence of a systematic error in the method.

14C.1 Two-Sample Collaborative Testing

The design of a collaborative test must provide the additional information 
needed to separate random errors from the systematic errors introduced by 
the analysts. One simple approach—accepted by the Association of Official 
Analytical Chemists—is to have each analyst analyze two samples that are 
similar in both their matrix and in their concentration of analyte. To ana-
lyze the results we represent each analyst as a single point on a two-sample 
scatterplot, using the result for one sample as the x-coordinate and the 
result for the other sample as the y-coordinate.8

As shown in Figure 14.19, a two-sample chart places each analyst into 
one of four quadrants, which we identify as (+, +), (–, +), (–, –) and (+, –). 
A plus sign indicates the analyst’s result for a sample is greater than the mean 
for all analysts and a minus sign indicates the analyst’s result is less than 
the mean for all analysts. The quadrant (+, –), for example, contains those 
analysts that exceeded the mean for sample X and that undershot the mean 
for sample Y. If the variation in results is dominated by random errors, then 

8 Youden, W. J. “Statistical Techniques for Collaborative Tests,” in Statistical Manual of the Associa-
tion of Official Analytical Chemists, Association of Official Analytical Chemists: Washington, D. 
C., 1975, pp 10–11.

Figure 14.18 Partitioning of random er-
rors, systematic errors due to the analyst, 
and systematic errors due to the method for 
(a) replicate analyses performed by a single 
analyst and (b) single determinations per-
formed by several analysts.

Representative Method 10.1 for the deter-
mination of iron in water and wastewater, 
and Representative Method 10.5 for the 
determination of sulfate in water, are two 
examples of standard methods validated 
through collaborative testing.

Xn

effect of 
random error

effect of systematic error
due to method and analyst

Xn

effect of random error
and systematic errors

due to analysts

effect of systematic error
due to the method

(a)

(b)
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we expect the points to be distributed randomly in all four quadrants, with 
an equal number of points in each quadrant. Furthermore, as shown in Fig-
ure 14.19a, the points will cluster in a circular pattern whose center is the 
mean values for the two samples. When systematic errors are significantly 
larger than random errors, then the points fall primarily in the (+, +) and 
the (–, –) quadrants, forming an elliptical pattern around a line that bisects 
these quadrants at a 45o angle, as seen in Figure 14.19b.

A visual inspection of a two-sample chart is an effective method for 
qualitatively evaluating the capabilities of a proposed standard method, as 
shown in figure 14.20. The length of a perpendicular line from any point 
to the 45o line is proportional to the effect of random error on that analyst’s 
results. The distance from the intersection of the axes—which corresponds 
to the mean values for samples X and Y—to the perpendicular projection 
of a point on the 45o line is proportional to the analyst’s systematic error. 
An ideal standard method has small random errors and small systematic 
errors due to the analysts, and has a compact clustering of points that is 
more circular than elliptical. 

We also can use the data in a two-sample chart to separate the total 
variation in the data, vtot, into contributions from random error, vrand, 
and from systematic errors due to the analysts, vsyst.9 Because an analyst’s 
systematic errors are present in his or her analysis of both samples, the dif-
ference, D, between the results estimates the contribution of random error.

D X Yi i i= -

To estimate the total contribution from random error we use the standard 
deviation of these differences, sD, for all analysts

( )

( )
s n

D D
s2 1D

i
i

n
2

1
rand rand. v= -

-
==

/ 14.18

9 Youden, W. J. “Statistical Techniques for Collaborative Tests,” in Statistical Manual of the Associa-
tion of Official Analytical Chemists, Association of Official Analytical Chemists: Washington, D. 
C., 1975, pp 22–24.

Figure 14.19 Typical two-sample plots when (a) random errors are significantly larger than systematic errors due to 
the analysts, and (b) when systematic errors due to the analysts are significantly larger than the random errors.
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Figure 14.20 Relationship between the re-
sult for a single analyst (in blue) and the 
contribution of random error (red arrow) 
and the contribution from the analyst’s sys-
tematic error (green arrow).
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where n is the number of analysts. The factor of 2 in the denominator of 
equation 14.18 is the result of using two values to determine Di. The total, 
T,  of each analyst’s results

T X Yi i i= +

contains contributions from both random error and twice the analyst’s 
systematic error.  

22 2 2
tot rand systv v v= + 14.19

The standard deviation of the totals, sT, provides an estimate for vtot.

( )

( )
s n

T T
s2 1T

i
i

n
2

1
tot tot. v= -

-
==

/ 14.20

Again, the factor of 2 in the denominator is the result of using two values 
to determine Ti.

If the systematic errors are significantly larger than the random errors, 
then sT is larger than sD, a hypothesis we can evaluate using a one-tailed 
F-test 

F s
s

D

T
2

2

=

where the degrees of freedom for both the numerator and the denomina-
tor are n – 1. As shown in the following example, if sT is significantly larger 
than sD we can use equation 14.19 to separate 2

totv  into components that 
represent the random error and the systematic error.

Example 14.6
As part of a collaborative study of a new method for determining the 
amount of total cholesterol in blood, you send two samples to 10 analysts 
with instructions that they analyze each sample one time. The following 
results, in mg total cholesterol per 100 mL of serum, are returned to you.

analyst sample 1 sample 2
1 245.0 229.4
2 247.4 249.7
3 246.0 240.4
4 244.9 235.5
5 255.7 261.7
6 248.0 239.4
7 249.2 255.5
8 225.1 224.3
9 255.0 246.3

10 243.1 253.1

Use this data estimate vrand and vsyst for the method.

For a review of the F-test, see Section 4F.2 
and Section 4F.3. Example 4.18 illustrates 
a typical application.

We double the analyst’s systematic error 
in equation 14.19 because it is the same 
in each analysis.
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SOLUTION

Figure 14.21 provides a two-sample plot of the results. The clustering of 
points suggests that the systematic errors of the analysts are significant. 
The vertical line at 245.9 mg/100 mL is the average value for sample 1 
and the average value for sample 2 is indicated by the horizontal line at 
243.5 mg/100 mL. To estimate vrand and vsyst we first calculate values for 
Di and Ti.

analyst Di Ti
1 15.6 474.4
2 -2.3 497.1
3 5.6 486.4
4 9.4 480.4
5 -6.0 517.4
6 8.6 487.4
7 -6.3 504.7
8 0.8 449.4
9 8.7 501.3

10 -10.0 496.2

Next, we calculate the standard deviations for the differences, sD, and 
the totals, sT, using equations 14.18 and 14.20, obtaining sD = 5.95 and 
sT = 13.3. To determine if the systematic errors between the analysts are 
significant, we use an F-test to compare sT and sD.

( . )
( . ) .F s

s
5 95
13 3 5 00

D

T
2

2

2

2

= = =

Because the F-ratio is larger than F(0.05, 9, 9), which is 3.179, we con-
clude that the systematic errors between the analysts are significant at the 
95% confidence level. The estimated precision for a single analyst is

.s s 5 95Drand rand.v = =

The estimated standard deviation due to systematic errors between analysts 
is calculated from equation 14.19.

( . ) ( . ) .s s
2 2 2

13 3 5 95 8 41T D
2 2 2 2 2 2

syst
tot rand .v v v= - - =

-
=

If the true values for the two samples are known, we also can test for 
the presence of a systematic error in the method. If there are no systematic 
method errors, then the sum of the true values, ntot, for samples X and Y 

X Ytotn n n= +

should fall within the confidence interval around T . We can use a two-
tailed t-test of the following null and alternate hypotheses

Figure 14.21 Two-sample plot for the data 
in Example 14.6. The number by each blue 
point indicates the analyst. The true values 
for each sample (see Example 14.7) are in-
dicated by the red star.
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Critical values for the F-test are in Ap-
pendix 5.
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: :H T H T0 tot A tot!n n=

to determine if there is evidence for a systematic error in the method. The 
test statistic, texp, is

t
s

T n
2

exp
T

totn
=

- 14.21

with n – 1 degrees of freedom. We include the 2  in the denominator be-
cause sT (see equation 14.20) underestimates the standard deviation when 
comparing T  to totn .

Example 14.7
The two samples analyzed in Example 14.6 are known to contain the fol-
lowing concentrations of cholesterol: nsamp 1 = 248.3 mg/100 mL and 
nsamp 1 = 247.6 mg/100 mL. Determine if there is any evidence for a 
systematic error in the method at the 95% confidence level.

SOLUTION

Using the data from Example 14.6 and the true values for the samples, we 
know that sT is 13.3, and that

. . . /T X X 245 9 243 5 489 4 100mg mLsamp 1 samp 2= + = + =

. . . /248 3 247 6 495 9 100mg mLtot samp 1 samp 2n n n= + = + =

Substituting these values into equation 14.21 gives

.
. . .t

13 3 2
489 4 495 9 10 1 09exp=

-
=

Because this value for texp is smaller than the critical value of 2.26 for 
t(0.05, 9), there is no evidence for a systematic error in the method at the 
95% confidence level.

Example 14.6 and Example 14.7 illustrate how we can use a pair of 
similar samples in a collaborative test of a new method. Ideally, a collabora-
tive test involves several pairs of samples that span the range of analyte con-
centrations for which we plan to use the method. In doing so, we evaluate 
the method for constant sources of error and establish the expected relative 
standard deviation and bias for different levels of analyte.

14C.2 Collaborative Testing and Analysis of Variance

In a two-sample collaborative test we ask each analyst to perform a single 
determination on each of two separate samples. After reducing the data to 
a set of differences, D, and a set of totals, T, each characterized by a mean 
and a standard deviation, we extract values for the random errors that affect 
precision and the systematic differences between then analysts. The calcula-
tions are relatively simple and straightforward.

For a review of the t-test of an experimen-
tal mean to a known mean, see Section 
4F.1. Example 4.16 illustrates a typical 
application.

Critical values for the t-test are in Appen-
dix 4.



933Chapter 14 Developing a Standard Method

An alternative approach to a collaborative test is to have each analyst 
perform several replicate determinations on a single, common sample. This 
approach generates a separate data set for each analyst and requires a differ-
ent statistical treatment to provide estimates for vrand and for vsyst.

There are several statistical methods for comparing three or more sets 
of data. The approach we consider in this section is an analysis of vari-
ance (ANOVA). In its simplest form, a one-way ANOVA allows us to 
explore the importance of a single variable—the identity of the analyst is 
one example—on the total variance. To evaluate the importance of this 
variable, we compare its variance to the variance explained by indetermi-
nate sources of error.

We first introduced variance in Chapter 4 as one measure of a data set’s 
spread around its central tendency. In the context of an analysis of variance, 
it is useful for us to understand that variance is simply a ratio of two terms: 
a sum of squares for the differences between individual values and their 
mean, and the degrees of freedom. For example, the variance, s2, of a data 
set consisting of n measurements is

( )
s n

X X

1
i

i

n

2

2

1= -

-
=

/

where Xi is the value of a single measurement and X  is the mean. The 
ability to partition the variance into a sum of squares and the degrees of 
freedom greatly simplifies the calculations in a one-way ANOVA.

Let’s use a simple example to develop the rationale behind a one-way 
ANOVA calculation. The data in Table 14.6 are from four analysts, each 
asked to determine the purity of a single pharmaceutical preparation of 
sulfanilamide. Each column in Table 14.6 provides the results for an in-
dividual analyst. To help us keep track of this data, we will represent each 
result as Xij, where i identifies the analyst and j indicates the replicate. For 
example, X3,5 is the fifth replicate for the third analyst, or 94.24%. 

The data in Table 14.6 show variability in the results obtained by each 
analyst and in the difference in the results between the analysts. There are 
two sources for this variability: indeterminate errors associated with the 
analytical procedure that are experienced equally by each analyst, and sys-
tematic or determinate errors introduced by the individual analysts.

One way to view the data in Table 14.6 is to treat it as a single large 
sample, characterized by a global mean and a global variance

X N

Xij
j

n

i

h

11

i

=
==

// 14.22

( )
s N

X X

1

ij
j

n

i

h
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where h is the number of samples (in this case the number of analysts), ni 
is the number of replicates for the ith sample (in this case the ith analyst), 
and N is the total number of data points (in this case 22). The global vari-
ance—which includes all sources of variability that affect the data—pro-
vides an estimate of the combined influence of indeterminate errors and 
systematic errors.

A second way to work with the data in Table 14.6 is to treat the results 
for each analyst separately. If we assume that each analyst experiences the 
same indeterminate errors, then the variance, s2, for each analyst provides 
a separate estimate of 2

randv . To pool these individual variances, which we 
call the within-sample variance, sw

2 , we square the difference between 
each replicate and its corresponding mean, add them up, and divide by the 
degrees of freedom.

( )
s N h

X X
w

ij i
j

n

i

h

2 2

2

11
rand

i

.v = -

-
==

// 14.24

To estimate the systematic errors, 2
systv , that affect the results in Table 

14.6 we need to consider the differences between the analysts. The variance 
of the individual mean values about the global mean, which we call the 
between-sample variance, sb

2 , is

( )
s h

n X X

1b

i i
i

h

2

2

1= -

-
=

/ 14.25

The between-sample variance includes contributions from both indetermi-
nate errors and systematic errors; thus

s nb
2 2 2

rand systv v= + 14.26
where n  is the average number of replicates per analyst.

n h

ni
i

h

1= =

/

Table 14.6 Determination of the %Purity of a Sulfanilamide 
Preparation by Four Analysts

replicate analyst A analyst B analyst C analyst D
1 94.09 99.55 95.14 93.88
2 94.64 98.24 94.62 94.23
3 95.08 101.1 95.28 96.05
4 94.54 100.4 94.59 93.89
5 95.38 100.1 94.24 94.95
6 93.62 95.49
X 94.56 99.88 94.77 94.75
s 0.641 1.073 0.428 0.899

Carefully compare our description of 
equation 14.24 to the equation itself. It 
is important that you understand why 
equation 14.24 provides our best estimate 
of the indeterminate errors that affect the 
data in Table 14.6. Note that we lose one 
degree of freedom for each of the h means 
included in the calculation.

We lose one degree of freedom for the 
global mean.

Note the similarity between equation 
14.26 and equation 14.19. The analysis 
of the data in a two-sample plot is the 
same as a one-way analysis of variance 
with h = 2.
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In a one-way ANOVA of the data in Table 14.6 we make the null hy-
pothesis that there are no significant differences between the mean values 
for the analysts. The alternative hypothesis is that at least one of the mean 
values is significantly different. If the null hypothesis is true, then 2

systv  
must be zero and sw

2  and sb
2  should have similar values. If sb

2  is significantly 
greater than sw

2 , then 2
systv  is greater than zero. In this case we must accept 

the alternative hypothesis that there is a significant difference between the 
means for the analysts. The test statistic is the F-ratio

F s
s

exp
w

b
2

2

=

which is compared to the critical value F(a, h – 1, N – h). This is a one-tailed 
significance test because we are interested only in whether sb

2  is significantly 
greater than sw

2 .
Both sb

2  and sw
2  are easy to calculate for small data sets. For larger data 

sets, calculating sw
2  is tedious. We can simplify the calculations by taking 

advantage of the relationship between the sum-of-squares terms for the 
global variance (equation 14.23), the within-sample variance (equation 
14.24), and the between-sample variance (equation 14.25). We can split 
the numerator of equation 14.23, which is the total sum-of-squares, SSt, 
into two terms

SS SS SSt w b= +

where SSw is the sum-of-squares for the within-sample variance and SSb is 
the sum-of-squares for the between-sample variance. Calculating SSt and 
SSb gives SSw by difference. Finally, dividing SSw and SSb by their respective 
degrees of freedom gives sw

2  and . sb
2  Table 14.7 summarizes the equations 

for a one-way ANOVA calculation. Example 14.8 walks you through the 
calculations, using the data in Table 14.6. Section 14E provides instruc-
tions on using Excel and R to complete a one-way analysis of variance. 

Problem 14.17 in the end of chapter prob-
lems asks you to verify this relationship 
between the sum-of-squares.

Table 14.7 Summary of Calculations for a One-Way Analysis of Variance

source sum-of-squares
degrees of 
freedom variance

expected vari-
ance F-ratio

between samples ( )SS n X Xb i i
i

h
2

1
= -

=

/ h – 1 s h
SS

1b
b2= -

s nb
2 2 2

rand systv v= + F s
s

exp
w

b
2

2

=

within samples SS SS SSw t b= - N – h s N h
SS

w
w2 = - sw

2 2
randv=

total
( )

( )

SS X X

s N 1

t ij
j

n

i

h

11

2

2

i

= -

= -
==

//
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Example 14.8
The data in Table 14.6 are from four analysts, each asked to determine the 
purity of a single pharmaceutical preparation of sulfanilamide. Determine 
if the difference in their results is significant at a = 0.05. If such a differ-
ence exists, estimate values for 2

systv  and 2
systv .

SOLUTION

To begin we calculate the global mean (equation 14.22) and the global 
variance (equation 14.23) for the pooled data, and the means for each 
analyst; these values are summarized here.

. .
. . . .

X s
X X X X

95 87 5 506
94 56 99 88 94 77 94 75A B C D

2= =

= = = =

Using these values we calculate the total sum of squares

( ) ( . ) ( ) .SS s N 1 5 506 22 1 115 63t
2= - = - =

the between sample sum of squares

( ) ( . . )

( . . ) ( . . )
( . . ) .

SS n X X 6 94 56 95 87

5 99 88 95 87 5 94 77 95 87
6 94 75 95 87 104 27

b i i
i

h
2

1

2

2 2

2

= - = - +

- + - +

- =

=

/

and the within sample sum of squares

. . .SS SS SS 115 63 104 27 11 36w t b= - = - =

The remainder of the necessary calculations are summarized in the follow-
ing table.

source sum-of-squares
degrees of 
freedom variance

between samples 104.27 h – 1 = 4 – 1 = 3 34.76
within samples 11.36 N – h = 22 – 4 = 18 0.631

Comparing the variances we find that

.
. .F s

s
0 631
34 76 55 09exp

w

b
2

2

= = =

Because Fexp is greater than F(0.05, 3, 18), which is 3.16, we reject the null 
hypothesis and accept the alternative hypothesis that the work of at least 
one analyst is significantly different from the remaining analysts. Our best 
estimate of the within sample variance is

.s 0 631rand w
2 2.v =

and our best estimate of the between sample variance is

/
. . .n

s s
22 4

34 76 0 631 6 205syst
b w2
2 2

.v - = - =
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In this example the variance due to systematic differences between the 
analysts is almost an order of magnitude greater than the variance due to 
the method’s precision.

Having demonstrated that there is significant difference between the 
analysts, we can use a modified version of the t-test—known as Fisher’s 
least significant difference—to determine the source of the difference. 
The test statistic for comparing two mean values is the t-test given in equa-
tion 4.21 in Chapter 4, except we replace the pooled standard deviation, 
spool, by the square root of the within-sample variance from the analysis of 
variance.

t
s

X X
n n

n n
exp

w
2

1 2

1 2

1 2#=
-

+ 14.27

We compare texp to its critical value t(a, o) using the same significance level 
as the ANOVA calculation. The degrees of freedom are the same as that for 
the within sample variance. Since we are interested in whether the larger 
of the two means is significantly greater than the other mean, the value of  
t(a, o) is that for a one-tailed significance test.

Example 14.9
In Example 14.8 we showed that there is a significant difference between 
the work of the four analysts in Table 14.6. Determine the source of this 
significant difference.

SOLUTION

Individual comparisons using Fisher’s least significant difference test are 
based on the following null hypothesis and the appropriate one-tailed al-
ternative hypothesis.

: : :H X X H X X H X Xor> <i j A i j A i j0 =

Using equation 14.27 we calculate values of texp for each possible com-
parison and compare them to the one-tailed critical value of 1.73 for 
t(0.05, 18). For example, texp for analysts A and B is

.
. . .t

0 631
94 56 99 88

6 5
6 5 11 06exp AB # #=

-
+ =^ h

Because (texp)AB is greater than t(0.05, 18) we reject the null hypothesis 
and accept the alternative hypothesis that the results for analyst B are sig-
nificantly greater than those for analyst A. Continuing with the other pairs 
it is easy to show that (texp)AC is 0.437, (texp)AD is 0.414, (texp)BC is 10.17, 
(texp)BD is 10.67, and (texp)CD is 0.04. Collectively, these results suggest 
that there is a significant systematic difference between the work of analyst 
B and the work of the other analysts. There is, of course no way to decide 
whether any of the four analysts has done accurate work.

You might ask why we bother with the 
analysis of variance if we are planning to 
use a t-test to compare pairs of analysts. 
Each t-test carries a probability, a, of 
claiming that a difference is significant 
even though it is not (a type 1 error). If 
we set a to 0.05 and complete six t-tests, 
the probability of a type 1 error increases 
to 0.265. Knowing that there is a signifi-
cant difference within a data set—what we 
gain from the analysis of variance—pro-
tects the t-test.

We have evidence that analyst B’s result is 
significantly different than the results for 
analysts A, C, and D, and that we have 
no evidence that there is any significant 
difference between the results of analysts 
A, C, and D. We do not know if analyst 
B’s results are accurate, or if the results of 
analysts A, C, and D are accurate. In fact, 
it is possible that none of the results in 
Table 14.6 are accurate.



938 Analytical Chemistry 2.1

We can extend an analysis of variance to systems that involve more than 
a single variable. For example, we can use a two-way ANOVA to determine 
the effect on an analytical method of both the analyst and the instrumen-
tation. The treatment of multivariate ANOVA is beyond the scope of this 
text, but is covered in several of the texts listed in this chapter’s additional 
resources.

14C.3 What is a Reasonable Result for a Collaborative Study?

Collaborative testing provides us with a method for estimating the variabil-
ity (or reproducibility) between analysts in different labs. If the variability is 
significant, we can determine what portion is due to indeterminate method 
errors, 2

randv , and what portion is due to systematic differences between the 
analysts, 2

systv . What is left unanswered is the following important question: 
What is a reasonable value for a method’s reproducibility?

An analysis of nearly 10 000 collaborative studies suggests that a reason-
able estimate for a method’s reproducibility is

R 2( . )logC1 0 5= - 14.28
where R is the percent relative standard deviation for the results included 
in the collaborative study and C is the fractional amount of analyte in the 
sample on a weight-to-weight basis.10 Equation 14.28 is thought to be 
independent of the type of analyte, the type of matrix, and the method 
of analysis. For example, when a sample in a collaborative study contains 
1 microgram of analyte per gram of sample, C is 10–6 and the estimated 
relative standard deviation is

%R 2 16( . )log1 0 5 10 6

= =- -

Example 14.10
What is the estimated relative standard deviation for the results of a collab-
orative study when the sample is pure analyte (100% w/w analyte)?  Repeat 
for the case where the analyte’s concentration is 0.1% w/w.

SOLUTION

When the sample is 100% w/w analyte (C = 1) the estimated relative stan-
dard deviation is 

%R 2 2( . )log1 0 5 1= =-

We expect that approximately two-thirds of the participants in the col-
laborative study (±1v) will report the analyte’s concentration within the 
range of 98% w/w to 102% w/w. If the analyte’s concentration is 0.1% 
w/w (C = 0.001), the estimated relative standard deviation is

10 (a) Horwitz, W. Anal. Chem. 1982, 54, 67A–76A; (b) Hall, P.; Selinger, B. Anal. Chem. 1989, 
61, 1465–1466; (c) Albert, R.; Horwitz, W. Anal. Chem. 1997, 69, 789–790, (d) “The Amazing 
Horwitz Function,” AMC Technical Brief 17, July 2004; (e) Lingser, T. P. J. Trends Anal. Chem. 
2006, 25, 1125

For a discussion of the limitations of equa-
tion 14.28, see Linsinger, T. P. J.; Josephs, 
R. D. “Limitations of the Application of 
the Horwitz Equation,” Trends Anal. Chem. 
2006, 25, 1125–1130, as well as a rebut-
tal (Thompson, M. “Limitations of the 
Application of the Horwitz Equation: A 
Rebuttal,” Trends Anal. Chem. 2007, 26, 
659–661) and response to the rebuttal 
(Linsinger, T. P. J.; Josephs, R. D. “Reply 
to Professor Michael Thompson’s Rebuttal,” 
Trends Anal. Chem. 2007, 26, 662–663.

For a normal distribution, 68.26% of the 
results fall within ±1s of the population’s 
mean (see Table 4.12). 
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. %R 2 5 7( . . )log1 0 5 0 001= =-

and we expect that approximately two-thirds of the analysts will report the 
analyte’s concentration within the range of 0.094% w/w to 0.106% w/w.

Of course, equation 14.28 only estimates the expected relative standard. 
If the method’s relative standard deviation falls with a range of one-half 
to twice the estimated value, then it is acceptable for use by analysts in 
different laboratories. The percent relative standard deviation for a single 
analyst should be one-half to two-thirds of that for the variability between 
analysts.

14D Using Excel and R for an Analysis of Variance
Although the calculations for an analysis of variance are relatively straight-
forward, they become tedious when working with large data sets. Both 
Excel and R include functions for completing an analysis of variance. In 
addition, R provides a function for identifying the source(s) of significant 
differences within the data set. 

14D.1 Excel

Excel’s Analysis ToolPak includes a tool to help you complete an analysis 
of variance. Let’s use the ToolPak to complete an analysis of variance on 
the data in Table 14.6. Enter the data from Table 14.6 into a spreadsheet 
as shown in Figure 14.22. To complete the analysis of variance select Data 
Analysis... from the Tools menu, which opens a window entitled “Data 
Analysis.” Scroll through the window, select Analysis: Single Factor from 
the available options and click OK. Place the cursor in the box for the 

“Input range” and then click and drag over the cells B1:E7. Select the radio 
button for “Grouped by: columns” and check the box for “Labels in the first 
row.” In the box for “Alpha” enter 0.05 for a. Select the radio button for 

“Output range,” place the cursor in the box and click on an empty cell; this 
is where Excel will place the results. Clicking OK generates the information 
shown in Figure 14.23. The small value of 3.05�10–9 for falsely rejecting 
the null hypothesis indicates that there is a significant source of variation 
between the analysts.

Figure 14.22 Portion of a spreadsheet 
containing the data from Table 14.6.

A B C D E
1 replicate analyst A analyst B analyst C analyst D
2 1 94.09 99.55 95.14 93.88
3 2 94.64 98.24 94.62 94.23
4 3 95.08 101.1 95.28 96.05
5 4 94.54 100.4 94.59 93.89
6 5 95.38 100.1 94.24 94.59
7 6 93.62 95.49

Excel’s Data Analysis Toolpak is available 
for Windows. Older versions of Excel for 
Mac include the toolpak; however, begin-
ning with Excel for Mac 2011, the toolpak 
no longer is available. 
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14D.2 R

To complete an analysis of variance for the data in Table 14.6 using R, we 
first need to create several objects. The first object contains each result from 
Table 14.6.

> results=c(94.090,  94.640,  95.008,  94.540,  95.380,  93.620, 
99.550,  98.240, 101.100, 100.400, 100.100,  95.140,  94.620,  
95.280,  94.590,  94.240,  93.880,  94.230,  96.050,  93.890, 
94.950,  95.490)

The second object contains labels that identify the source of each entry in 
the first object. The following code creates this object.

> analyst = c(rep(“a”,6), rep(“b”,5), rep(“c”,5), rep(“d”,6))
Next, we combine the two objects into a table with two columns, one that 
contains the data (results) and one that contains the labels (analyst).

> df = data.frame(results, labels = factor(analyst))
The command factor indicates that the object analyst contains the categori-
cal factors for the analysis of variance. The command for an analysis of vari-
ance takes the following form

anova(lm(data ~ factors), data = data.frame)

where data and factors are the columns that contain the data and the cate-
gorical factors, and data.frame is the name we assigned to the data table. Fig-
ure 14.24 shows the output for an analysis of variance of the data in Table 
14.6. The small value of 3.04�10–9 for falsely rejecting the null hypothesis 
indicates that there is a significant source of variation between the analysts.

Having found a significant difference between the analysts, we want to 
identify the source of this difference. R does not include Fisher’s least sig-

Figure 14.23 Output from Excel’s one-way analysis of variance of the data in Table 14.6. The summary table provides 
the mean and variance for each analyst. The ANOVA table summarizes the sum-of-squares terms (SS), the degrees 
of freedom (df), the variances (MS for mean square), the value of Fexp and the critical value of F, and the probability 
of incorrectly rejecting the null hypothesis that there is no significant difference  between the analysts.

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

analyst A 6 567.35 94.5583333 0.41081667
analyst B 5 499.39 99.878 1.15142
analyst C 5 473.87 94.774 0.18318
analyst D 6 568.49 94.7483333 0.80889667

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 104.197961 3 34.7326535 54.6637742 3.0463E-09 3.1599076
Within Groups 11.4369667 18 0.63538704

Total 115.634927 21

You can arrange the results in any order. In 
creating this object, I choose to list the re-
sults for analyst A, followed by the results 
for analyst B, C, and D.
The command rep (for repeat) has two 
variables: the item to repeat and the num-
ber of times it is repeated. The object 
analyst is the vector (“a”,“a”,“a”,“a”,“a”,“a”, 
“b”,“b”,“b”,“b”,“b”, “c”, “c”,“c”,“c”,“c”,“d”, 
“d”, “d”, “d”, “d”, “d”).

We call this table a data frame. Many 
functions in R work on the columns in 
a data frame.

The command lm stands for linear model. 
See Section 5F.2 in Chapter 5 for a discus-
sion of linear models in R.
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nificant difference test, but it does include a function for a related method 
called Tukey’s honest significant difference test. The command for this test 
takes the following form

> TukeyHSD(aov(lm(data ~ factors), data = data.frame), conf.
level = 0.95)

where data and factors are the columns that contain the data and the cat-
egorical factors, and data.frame is the name we assigned to the data table.  
Figure 14.25 shows the output of this command and its interpretation. The 
small probability values when comparing analyst B to each of the other ana-
lysts indicates that this is the source of the significant difference identified 
in the analysis of variance.

Figure 14.24 Output of an R session for an analysis of variance for the data in Table 14.6. In 
the table, “labels” is the between-sample variance and “residuals” is the within-sample vari-
ance. The p-value of 3.04e-09 is the probability of incorrectly rejecting the null hypothesis 
that the within-sample and between-sample variances are the same.

> anova(lm(results ~ labels, data = df ))

Analysis of Variance Table

Response: results
           Df      Sum Sq       Mean Sq   F value       Pr(>F)    
labels         3      104.198      34.733         54.664        3.04e-09 ***
Residuals 18        11.366        0.631                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

You may recall that an underlined com-
mand is the default value. If you are us-
ing an a of 0.05 (a 95% confidence level), 
then you do not need to include the entry 
for conf.level. If you wish to use an a of 
0.10, then enter conf.level = 0.90.

Note that p value is small when the confi-
dence interval for the difference includes 
zero.

Figure 14.25 Output of an R session for a Tukey honest significance difference test using the data in Table 14.6. For 
each possible comparison of analysts, the table gives the actual difference between the analysts, “diff,” and the smallest, 
“lwr,” and the largest, “upr,” differences for a 95% confidence interval. The “p adj” is the probability that a difference of 
zero falls within this confidence interval. The smaller the p-value, the greater the probability that the difference between 
the analysts is significant. 

> TukeyHSD(aov(results ~ labels, data = df ))
Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = results ~ labels, data = df )

$labels
                 diff                lwr              upr             p adj
b-a     5.31966667   3.928277   6.711057  0.0000000
c-a     0.21566667  –1.175723   1.607057  0.9710635
d-a     0.28000000  –1.046638   1.606638  0.9318110
c-b   –5.10400000  –6.557260  –3.650740  0.0000001
d-b   –5.03966667  –6.431057  –3.648277  0.0000000
d-c     0.06433333  –1.327057   1.455723  0.9991718
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14E Key Terms
2k factorial design analysis of variance between-sample variance
blind analysis central composite design collaborative testing
dependent effective efficiency
empirical model factor factor level
Fisher’s least significant 
difference

fixed-size simplex 
optimization

global optimum

independent local optimum one-factor-at-a-time 
optimization

response response surface ruggedness testing
searching algorithm simplex standard method
theoretical model validation variable-sized simplex 

optimization
within-sample variance

 14F Summary
One of the goals of analytical chemistry is to develop new analytical meth-
ods that are accepted as standard methods. In this chapter we have consid-
ered how a standard method is developed, including finding the optimum 
experimental conditions, verifying that the method produces acceptable 
precision and accuracy, and validating the method for general use.

To optimize a method we try to find the combination of experimental 
parameters that produces the best result or response. We can visualize this 
process as being similar to finding the highest point on a mountain. In 
this analogy, the mountain’s topography corresponds to a response surface, 
which is a plot of the system’s response as a function of the factors under 
our control.

One method for finding the optimum response is to use a searching 
algorithm. In a one-factor-at-a-time optimization, we change one factor 
while holding constant all other factors until there is no further improve-
ment in the response. The process continues with the next factor, cycling 
through the factors until there is no further improvement in the response. 
This approach to finding the optimum response often is effective, but usu-
ally is not efficient. A searching algorithm that is both effective and efficient 
is a simplex optimization, the rules of which allow us to change the levels 
of all factors simultaneously.

Another approach to optimizing a method is to develop a mathematical 
model of the response surface. Such models can be theoretical, in that they 
are derived from a known chemical and physical relationship between the 
response and its factors. Alternatively, we can develop an empirical model, 
which does not have a firm theoretical basis, by fitting an empirical equa-
tion to our experimental data. One approach is to use a 2k factorial design 
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in which each factor is tested at both a high level and a low level, and paired 
with the high level and the low level for all other factors.

After optimizing a method it is necessary to demonstrate that it can 
produce acceptable results. Verifying a method usually includes establish-
ing single-operator characteristics, the blind analysis of standard samples, 
and determining the method’s ruggedness. Single-operator characteristics 
include the method’s precision, accuracy, and detection limit when used by 
a single analyst. To test against possible bias on the part of the analyst, he or 
she analyzes a set of blind samples in which the analyst does not know the 
concentration of analyte. Finally, we use ruggedness testing to determine 
which experimental factors must be carefully controlled to avoid unexpect-
edly large determinate or indeterminate sources of error.

The last step in establishing a standard method is to validate its transfer-
ability to other laboratories. An important step in the process of validating 
a method is collaborative testing, in which a common set of samples is 
analyzed by different laboratories. In a well-designed collaborative test it is 
possible to establish limits for the method’s precision and accuracy. 

14G Problems

1. For each of the following equations determine the optimum response 
using a one-factor-at-a-time searching algorithm. Begin the search at 
(0,0) by first changing factor A, using a step-size of 1 for both fac-
tors. The boundary conditions for each response surface are 0 ≤ A ≤ 10 
and 0 ≤ B ≤ 10. Continue the search through as many cycles as neces-
sary until you find the optimum response. Compare your optimum 
response for each equation to the true optimum.

(a) R = 1.68 + 0.24A + 0.56B – 0.04A2 – 0.04B2     nopt = (3, 7)

(b) R = 4.0 – 0.4A + 0.08AB     nopt = (10, 10)

(c) R = 3.264 + 1.537A + 0.5664B – 0.1505A2 – 0.02734B2 

 – 0.05785AB     nopt = (391,  6.22)

2. Use a fixed-sized simplex searching algorithm to find the optimum 
response for the equation in Problem 1c. For the first simplex, set one 
vertex at (0,0) with step sizes of one. Compare your optimum response 
to the true optimum.

3. Show that equation 14.3 and equation 14.4 are correct.

4. A 2k factorial design was used to determine the equation for the re-
sponse surface in Problem 1b. The uncoded levels, coded levels, and 
the responses are shown in the following table. Determine the uncoded 
equation for the response surface.

Note: These equations are from Deming, 
S. N.; Morgan, S. L. Experimental Design: 
A Chemometric Approach, Elsevier: Am-
sterdam, 1987, and pseudo-three dimen-
sional plots of the response surfaces can 
be found in their Figures 11.4, 11.5 and 
11.14.
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A B A* B* response
8 8 +1 +1 5.92
8 2 +1 –1 2.08
2 8 –1 +1 4.48
2 2 –1 –1 3.52

5. Koscielniak and Parczewski investigated the influence of Al on the de-
termination of Ca by atomic absorption spectrophotometry using the 
2k factorial design shown in the following table.11

Ca2+

(ppm)
Al3+

(ppm) Ca* Al* response
10 160 +1 +1 54.92
10 0 +1 –1 98.44

4 160 –1 +1 19.18
4 0 –1 –1 38.52

(a) Determine the uncoded equation for the response surface.

(b)  If you wish to analyze a sample that is 6.0 ppm Ca2+, what is the 
maximum concentration of Al3+ that can be present if the error in 
the response must be less than 5.0%?

6. Strange studied a chemical reaction using a 23 factorial design.12

factor high (+1) level low (–1) level
X: temperature 140 oC 120 oC
Y: catalyst type B type A
Z: [reactant] 0.50 M 0.25 M

run X* Y* Z* % yield
1 –1 –1 –1 28
2 +1 –1 –1 17
3 –1 +1 –1 41
4 +1 +1 –1 34
5 –1 –1 +1 56
6 +1 –1 +1 51
7 –1 +1 +1 42
8 +1 +1 +1 36

11 Koscielniak, P.; Parczewski, A. Anal. Chim. Acta 1983, 153, 111–119.
12 Strange, R. S. J. Chem. Educ. 1990, 67, 113–115.
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(a) Determine the coded equation for this data.

(b) If b terms of less than ±1 are insignificant, what main effects and 
what interaction terms in the coded equation are important? Write 
down this simpler form for the coded equation.

(c) Explain why the coded equation for this data can not be trans-
formed into an uncoded form.

(d) Which is the better catalyst, A or B? 

(e) What is the yield if the temperature is set to 125 oC, the concentra-
tion of the reactant is 0.45 M, and we use the appropriate catalyst?

7. Pharmaceutical tablets coated with lactose often develop a brown dis-
coloration. The primary factors that affect the discoloration are temper-
ature, relative humidity, and the presence of a base acting as a catalyst. 
The following data have been reported for a 23 factorial design.13

factor high (+1) level low (–1) level
X: benzocaine present absent
Y: temperature 40 oC 25 oC
Z: relative humidity 75% 50%

run X* Y* Z*
color

(arb. units)
1 –1 –1 –1 1.55
2 +1 –1 –1 5.40
3 –1 +1 –1 3.50
4 +1 +1 –1 6.75
5 –1 –1 +1 2.45
6 +1 –1 +1 3.60
7 –1 +1 +1 3.05
8 +1 +1 +1 7.10

(a) Determine the coded equation for this data.

(b) If b terms of less than 0.5 are insignificant, what main effects and 
what interaction terms in the coded equation are important? Write 
down this simpler form for the coded equation.

13 Armstrong, N. A.; James, K. C. Pharmaceutical Experimental Design and Interpretation, Taylor 
and Francis: London, 1996 as cited in Gonzalez, A. G. Anal. Chim. Acta 1998, 360, 227–241.



946 Analytical Chemistry 2.1

8. The following data for a 23 factorial design were collected during a 
study of the effect of temperature, pressure, and residence time on the 
% yield of a reaction.14

factor high (+1) level low (–1) level
X: temperature 200 oC 100 oC
Y: pressure 0.6 MPa 0.2 MPa
Z: residence time 20 min 10 min

run X* Y* Z*
percent
yield

1 –1 –1 –1 2
2 +1 –1 –1 6
3 –1 +1 –1 4
4 +1 +1 –1 8
5 –1 –1 +1 10
6 +1 –1 +1 18
7 –1 +1 +1 8
8 +1 +1 +1 12

(a) Determine the coded equation for this data.

(b) If b terms of less than 0.5 are insignificant, what main effects and 
what interaction terms in the coded equation are important? Write 
down this simpler form for the coded equation.

(c) Three runs at the center of the factorial design—a temperature of 
150 oC, a pressure of 0.4 MPa, and a residence time of 15 min—
give percent yields of 8%, 9%, and 8.8%. Determine if a first-order 
empirical model is appropriate for this system at a = 0.05.

9. Duarte and colleagues used a factorial design to optimize a flow-injec-
tion analysis method for determining penicillin.15 Three factors were 
studied: reactor length, carrier flow rate, and sample volume, with the 
high and low values summarized in the following table.

factor high (+1) level low (–1) level
X: reactor length 1.5 cm 2.0 cm
Y: carrier flow rate 1.6 mL/min 2.2 mL/min
Z: sample volume 100 mL 150 mL

14 Akhnazarova, S.; Kafarov, V. Experimental Optimization in Chemistry and Chemical Engineer-
ing, MIR Publishers: Moscow, 1982 as cited in Gonzalez, A. G. Anal. Chim. Acta 1998, 360, 
227–241.

15 Duarte, M. M. M. B.; de O. Netro, G.; Kubota, L. T.; Filho, J. L. L.; Pimentel, M. F.; Lima, F.; 
Lins, V. Anal. Chim. Acta 1997, 350, 353–357.

Note that the coded values +1 and –1 
need not correspond to physical larger and 
physically smaller values. In this case, for 
example, all three factors have their largest 
value assigned to the low, or –1 level.
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 The authors determined the optimum response using two criteria: the 
greatest sensitivity, as determined by the change in potential for the 
potentiometric detector, and the largest sampling rate. The following 
table summarizes their optimization results.

run X* Y* Z* DE (mV) samples/h
1 –1 –1 –1 37.45 21.5
2 +1 –1 –1 31.70 26.0
3 –1 +1 –1 32.10 30.0
4 +1 +1 –1 27.20 33.0
5 –1 –1 +1 39.85 21.0
6 +1 –1 +1 32.85 19.5
7 –1 +1 +1 35.00 30.0
8 +1 +1 +1 32.15 34.0

(a) Determine the coded equation for the response surface where DE 
is the response.

(b) Determine the coded equation for the response surface where 
sample/h is the response.

(c) Based on the coded equations in (a) and in (b), do conditions that 
favor sensitivity also improve the sampling rate?

(d) What conditions would you choose if your goal is to optimize both 
sensitivity and sampling rate?  

10. Here is a challenge!  McMinn, Eatherton, and Hill investigated the ef-
fect of five factors for optimizing an H2-atmosphere flame ionization 
detector using a 25 factorial design.16 The factors and their levels were

factor high (+1) level low (–1) level
A: H2 flow rate 1460 mL/min 1382 mL/min
B: SiH4 20.0 ppm 12.2 ppm
C: O2 + N2 flow rate 255 mL/min 210 mL/min
D: O2/N2 1.36 1.19
E: electrode height 75 (arb. unit) 55 (arb. unit)

 The coded (“+” = +1, “–” = –1) factor levels and responses, R, for the 
32 experiments are shown in the following table

16 McMinn, D. G.; Eatherton, R. L.; Hill, H. H. Anal. Chem. 1984, 56, 1293–1298.
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run A* B* C* D* E* run A* B* C* D* E*
1 – – – – – 17 – – – – +

2 + – – – – 18 + – – – +

3 – + – – – 19 – + – – +

4 + + – – – 20 + + – – +

5 – – + – – 21 – – + – +

6 + – + – – 22 + – + – +

7 – + + – – 23 – + + – +

8 + + + – – 24 + + + – +

9 – – – + – 25 – – – + +

10 + – – + – 26 + – – + +

11 – + – + – 27 – + – + +

12 + + – + – 28 + + – + +

13 – + + + – 29 – – + + +

14 + – + + – 30 + – + + +

15 – + + + – 31 – + + + +

16 + + + + – 32 + + + + +

(a) Determine the coded equation for this response surface, ignoring 
b terms less than ±0.03.

(b) A simplex optimization of this system finds optimal values for the 
factors of A = 2278 mL/min, B = 9.90 ppm, C = 260.6 mL/min, 
and D = 1.71. The value of E was maintained at its high level. Are 
these values consistent with your analysis of the factorial design.

11. A good empirical model provides an accurate picture of the response 
surface over the range of factor levels within the experimental design. 
The same model, however, may yield an inaccurate prediction for the 
response at other factor levels. For this reason, an empirical model, is 
tested before it is extrapolated to conditions other than those used in 
determining the model. For example, Palasota and Deming studied the 
effect of the relative amounts of H2SO4 and H2O2 on the absorbance of 
solutions of vanadium using the following central composite design.17

run drops 1% H2SO4 drops 20% H2O2
 1 15 22
 2 10 20
 3 20 20

17 Palasota, J. A.; Deming, S. N. J. Chem. Educ. 1992, 62, 560–563.
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run drops 1% H2SO4 drops 20% H2O2
 4 8 15
 5 15 15
 6 15 15
 7 15 15
 8 15 15
 9 22 15
 10 10 10
 11 20 10
 12 15 8

 The reaction of H2SO4 and H2O2 generates a red-brown solution 
whose absorbance is measured at a wavelength of 450 nm. A regression 
analysis on their data yields the following uncoded equation for the 
response (absorbance � 1000).

. . .
. . .

R X X
X X X X

835 90 36 82 21 34
0 52 0 15 0 98

1 2

1
2

2
2

1 2

= - - +

+ +

      where X1 is the drops of H2O2, and X2 is the drops of H2SO4. Calculate 
the predicted absorbances for 10 drops of H2O2 and 0 drops of H2SO4, 
0 drops of H2O2 and 10 drops of H2SO4, and for 0 drops of each re-
agent. Are these results reasonable? Explain. What does your answer tell 
you about this empirical model?

12. A newly proposed method is tested for its single-operator character-
istics. To be competitive with the standard method, the new method 
must have a relative standard deviation of less than 10%, with a bias 
of less than 10%. To test the method, an analyst performs 10 replicate 
analyses on a standard sample known to contain 1.30 ppm of analyte. 
The results for the 10 trials are

1.25   1.26   1.29   1.56   1.46   1.23   1.49   1.27   1.31   1.43

 Are the single-operator characteristics for this method acceptable?

13. A proposed gravimetric method was evaluated for its ruggedness by 
varying the following factors.

Factor A: sample size A = 1 g a = 1.1 g
Factor B: pH B = 6.5 b = 6.0
Factor C: digestion time C = 3 h c = 1 h
Factor D: number rinses D = 3 d = 5
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Factor E: precipitant E = reagent 1 e = reagent 2
Factor F: digestion temperature F = 50 oC f = 60 oC
Factor G: drying temperature G = 110 oC g = 140 oC

 A standard sample that contains a known amount of analyte is carried 
through the procedure using the experimental design in Table 14.5. 
The percentage of analyte actually found in the eight trials are as follows: 
R1 = 98.9, R2 = 98.5, R3 = 97.7, R4 = 97.0, R5 = 98.8, R6 = 98.5, R7 = 
97.7, and R8 = 97.3. Determine which factors, if any, appear to have a 
significant affect on the response, and estimate the expected standard 
deviation for the method.

14. The two-sample plot for the data in Example 14.6 is shown in Figure 
14.21. Identify the analyst whose work is (a) the most accurate, (b) the 
most precise, (c) the least accurate, and (d) the least precise.

15. Chichilo reports the following data for the determination of the %w/w 
Al in two samples of limestone.18

analyst sample 1 sample 2
1 1.35 1.57
2 1.35 1.33
3 1.34 1.47
4 1.50 1.60
5 1.52 1.62
6 1.39 1.52
7 1.30 1.36
8 1.32 1.53

 Construct a two-sample plot for this data and estimate values for vrand 
and for vsyst.

16. The importance of between-laboratory variability on the results of an 
analytical method are determined by having several laboratories ana-
lyze the same sample. In one such study, seven laboratories analyzed a 
sample of homogenized milk for a selected aflatoxin.19 The results, in 
ppb, are summarized below.

18 Chichilo, P. J. J. Assoc. Offc. Agr. Chemists 1964, 47, 1019 as reported in Youden, W. J. “Sta-
tistical Techniques for Collaborative Tests,” in Statistical Manual of the Association of Official 
Analytical Chemists, Association of Official Analytical Chemists: Washington, D. C., 1975

19 Massart, D. L.; Vandeginste, B. G. M; Deming, S. N.; Michotte, Y.; Kaufman, L. Chemometrics: 
A Textbook, Elsevier: Amsterdam, 1988.
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lab A lab B lab C lab D lab E lab F lab G
1.6 4.6 1.2 1.5 6.0 6.2 3.3
2.9 2.8 1.9 2.7 3.9 3.8 3.8
3.5 3.0 2.9 3.4 4.3 5.5 5.5
1.8 4.5 1.1 2.0 5.8 4.2 4.9
2.2 3.1 2.9 3.4 4.0 5.3 4.5

(a) Determine if the between-laboratory variability is significantly 
greater than the within-laboratory variability at a = 0.05. If the 
between-laboratory variability is significant, then determine the 
source(s) of that variability.

(b) Estimate values for 2
randv  and for 2

systv .

17. Show that the total sum-of-squares (SSt) is the sum of the within-sam-
ple sum-of-squares (SSw) and the between-sample sum-of-squares (SSb). 
See Table 14.7 for the relevant equations.

18. Eighteen analytical students are asked to determine the %w/w Mn in a 
sample of steel, with the results shown here. 

0.26%   0.28%   0.27%   0.24%   0.26%   0.25%

0.26%   0.28%   0.25%   0.24%   0.26%   0.25%

0.29%   0.24%   0.27%   0.23%   0.26%   0.24%
(a) Given that the steel sample is 0.26% w/w Mn, estimate the ex-

pected relative standard deviation for the class’ results. 

(b) The actual results obtained by the students are shown here. Are 
these results consistent with the estimated relative standard devia-
tion?

14H Solutions to Practice Exercises
Practice Exercise 14.1
If we hold factor A at level A1, changing factor B from level B1 to level B2 
increases the response from 40 to 60, or a change DR, of

R 60 40 203 = - =

If we hold factor A at level A2, we find that we have the same change in 
response when the level of factor B changes from B1 to B2.

R 100 80 203 = - =

Click here to return to the chapter.
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Practice Exercise 14.2
If we hold factor B at level B1, changing factor A from level A1 to level A2 
increases the response from 20 to 80, or a change DR, of

R 80 20 603 = - =

If we hold factor B at level B2, we find that the change in response when 
the level of factor A changes from A1 to A2 is now 20.

R 80 60 203 = - =

Click here to return to the chapter.


